Search results for: career decision efficacy
235 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.
Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175234 Directional Drilling Optimization by Non-Rotating Stabilizer
Authors: Eisa Noveiri, Adel Taheri Nia
Abstract:
The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.Keywords: non-rotating, Adjustable stabilizer, simulator, Directional Drilling, optimization, Oil Well Drilling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274233 Optimal Opportunistic Maintenance Policy for a Two-Unit System
Authors: Nooshin Salari, Viliam Makis, Jane Doe
Abstract:
This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.Keywords: Condition-based maintenance, opportunistic maintenance, preventive maintenance, two-unit system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017232 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. Collecting, managing, and retaining large amounts of data in cloud environments make information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.
Keywords: Cloud compliance, cloud security, cloud security governance, data governance, privacy protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912231 Information Requirements for Vessel Traffic Service Operations
Authors: Fan Li, Chun-Hsien Chen, Li Pheng Khoo
Abstract:
Operators of vessel traffic service (VTS) center provides three different types of services; namely information service, navigational assistance and traffic organization to vessels. To provide these services, operators monitor vessel traffic through computer interface and provide navigational advice based on the information integrated from multiple sources, including automatic identification system (AIS), radar system, and closed circuit television (CCTV) system. Therefore, this information is crucial in VTS operation. However, what information the VTS operator actually need to efficiently and properly offer services is unclear. The aim of this study is to investigate into information requirements for VTS operation. To achieve this aim, field observation was carried out to elicit the information requirements for VTS operation. The study revealed that the most frequent and important tasks were handling arrival vessel report, potential conflict control and abeam vessel report. Current location and vessel name were used in all tasks. Hazard cargo information was particularly required when operators handle arrival vessel report. The speed, the course, and the distance of two or several vessels were only used in potential conflict control. The information requirements identified in this study can be utilized in designing a human-computer interface that takes into consideration what and when information should be displayed, and might be further used to build the foundation of a decision support system for VTS.
Keywords: Vessel traffic service, information requirements, hierarchy task analysis, field observation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592230 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.
Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478229 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms
Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano
Abstract:
CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556228 The Impact of Size of the Regional Economic Blocs to the Country’s Flows of Trade: Evidence from COMESA, EAC and Tanzania
Authors: Mosses E. Lufuke, Lorna M. Kamau
Abstract:
This paper attempted to assess whether the size of the regional economic bloc has an impact to the flow of trade to a particular country. Two different sized blocs (COMESA and EAC) and one country (Tanzania) have been used as the point of references. Using the results from of the analyses, the paper also was anticipated to establish whether it was rational for Tanzania to withdraw its membership from COMESA (the larger bloc) to join EAC (the small one). Gravity model has been used to estimate the relationship between the variables, from which the bilateral trade flows between Tanzania and the eighteen member countries of the two blocs (COMESA and EAC) was employed for the time between 2000 and 2013. In the model, the dummy variable for regional bloc (bloc) at which the Tanzania trade partner countries belong are also added to the model to understand which trade bloc exhibit higher trade flow with Tanzania. From the findings, it was noted that over the period of study (2000-2013) Tanzania acknowledged more than 257% of trade volume in EAC than in COMESA. Conclusive, it was noted that the flow of trade is explained by many other variables apart from the size of regional bloc; and that the size by itself offer insufficient evidence in causality relationship. The paper therefore remain neutral on such staggered switching decision since more analyses are required to establish the country’s trade flow, especially when if it had been in multiple membership of COMESA and EAC.Keywords: Economic Bloc, Flow of Trade, Size of Bloc, Switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207227 An Investigation into the Impact of Techno-Entrepreneurship Education on Self-Employment
Authors: F. Farzin
Abstract:
Research has shown that techno-entrepreneurship is economically significant. Therefore, it is suggested that teaching techno-entrepreneurship may be important because such programmes would prepare current and future generations of learners to recognise and act on high-technology opportunities. Education in technoentrepreneurship may increase the knowledge of how to start one’s own enterprise and recognise the technological opportunities for commercialisation to improve decision-making about starting a new venture; also it influence decisions about capturing the business opportunities and turning them into successful ventures. Universities can play a main role in connecting and networking technoentrepreneurship students towards a cooperative attitude with real business practice and industry knowledge. To investigate and answer whether education for techno-entrepreneurs really helps, this paper choses a comparison of literature reviews as its method of research. After reviewing literature related to the impact of technoentrepreneurship education on self-employment 6 studies which had similar aim and objective to this paper were. These particular papers were selected based on a keywords search and as their aim, objectives, and gaps were close to the current research. In addition, they were all based on the influence of techno-entrepreneurship education in self-employment and intention of students to start new ventures. The findings showed that teaching techno-entrepreneurship education may have an influence on students’ intention and their future self-employment, but which courses should be covered and the duration of programmes, needs further investigation.Keywords: Techno-entrepreneurship education, training, higher education, intention, self-employment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973226 Managing the Architectural Heritage of Tripoli, Libya: Case Study of the Red Castle
Authors: Eman Mohamed Ali Elalwani, Salah Haj Ismail
Abstract:
The Libyan heritage buildings are currently facing a number of crises that pose a threat to their structural integrity, functionality, and overall performance. One of the challenges pertains to the loss of community identity, which has arisen due to the lack of awareness and unconscious behavior of the residents. An additional issue arises from inadequate site management practices, including the implementation of modern techniques and innovative building materials that are incompatible with structural elements, resulting in the deformation of certain sections of the buildings. The security concerns of the city, along with the ongoing civil conflict, fostered a conducive environment for violations, resulting in the vandalism of certain monuments in the city. However, the degradation of this valuable heritage is mainly attributed to the city's neglect and pollution. The elevated groundwater level resulting from pollution has led to erosion in the building's foundations. Mitigating these negative consequences through strategic interventions and rehabilitation is required to preserve this treasure. In order to assist the local community in recovering from those crises, this paper stated a viable strategy for promoting preservation efforts that aimed at safeguarding the heritage sites while also providing guidance to decision-makers and the local community on how to avoid these crises, preserve, enhance, and recognize the significance of the Libyan heritage.
Keywords: Cultural heritage, historical buildings, Tripoli’s Old City, Red Castle, crises, preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33225 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887224 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach
Authors: Ching-Feng Chen, Shih-Kai Chen
Abstract:
The Floating Photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO2) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.
Keywords: Carbon Border Adjustment Mechanism, Floating Photovoltaic, Emissions Trading Systems, Net Present Value, NPV, Internal Rate of Return, IRR, Benefit-Cost Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152223 Antibiotic Prescribing in the Acute Care in Iraq
Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas
Abstract:
Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.
Keywords: Acute care, antibiotic misuse, Iraq, prescribing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984222 Analysis and Evaluation of the Public Responses to Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing in urban streets is one of the most suitable options for solving the traffic problems and environment pollutions in the cities of the country. Unlike its acceptable outcomes, there are problems concerning the necessity to pay by the mass. Regarding the fact that public response in order to succeed in this strategy is so influential, studying their response and behavior to get the feedback and improve the strategies is of great importance. In this study, a questionnaire was used to examine the public reactions to the traffic congestion pricing schemes at the center of Tehran metropolis and the factors involved in people’s decision making in accepting or rejecting the congestion pricing schemes were assessed based on the data obtained from the questionnaire as well as the international experiences. Then, by analyzing and comparing the schemes, guidelines to reduce public objections to them are discussed. The results of reviewing and evaluating the public reactions show that all the pros and cons must be considered to guarantee the success of these projects. Consequently, with targeted public education and consciousness-raising advertisements, prior to initiating a scheme and ensuring the mechanism of the implementation after the start of the project, the initial opposition is reduced and, with the gradual emergence of the real and tangible benefits of its implementation, users’ satisfaction will increase.
Keywords: Demand management, international experiences, traffic congestion pricing, public acceptance, public objection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651221 Processing the Medical Sensors Signals Using Fuzzy Inference System
Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi
Abstract:
Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967220 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313219 The Effects of Negative Electronic Word-of-Mouth and Webcare on Thai Online Consumer Behavior
Authors: Pongsatorn Tantrabundit, Lersak Phothong, Ong-art Chanprasitchai
Abstract:
Due to the emergence of the Internet, it has extended the traditional Word-of-Mouth (WOM) to a new form called “Electronic Word-of-Mouth (eWOM).” Unlike traditional WOM, eWOM is able to present information in various ways by applying different components. Each eWOM component generates different effects on online consumer behavior. This research investigates the effects of Webcare (responding message) from product/ service providers on negative eWOM by applying two types of products (search and experience). The proposed conceptual model was developed based on the combination of the stages in consumer decision-making process, theory of reasoned action (TRA), theory of planned behavior (TPB), the technology acceptance model (TAM), the information integration theory and the elaboration likelihood model. The methodology techniques used in this study included multivariate analysis of variance (MANOVA) and multiple regression analysis. The results suggest that Webcare does slightly increase Thai online consumer’s perceptions on perceived eWOM trustworthiness, information diagnosticity and quality. For negative eWOM, we also found that perceived eWOM Trustworthiness, perceived eWOM diagnosticity and quality have a positive relationship with eWOM influence whereas perceived valence has a negative relationship with eWOM influence in Thai online consumers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402218 A Survey Proposal towards Holistic Management of Schizophrenia
Authors: Pronab Ganguly, Ahmed A. Moustafa
Abstract:
Holistic management of schizophrenia involves mainstream pharmacological intervention, complimentary medicine intervention, therapeutic intervention and other psychosocial factors such as accommodation, education, job training, employment, relationship, friendship, exercise, overall well-being, smoking, substance abuse, suicide prevention, stigmatisation, recreation, entertainment, violent behaviour, arrangement of public trusteeship and guardianship, day-day-living skill, integration with community, and management of overweight due to medications and other health complications related to medications amongst others. Our review shows that there is no integrated survey by combining all these factors. An international web-based survey was conducted to evaluate the significance of all these factors and present them in a unified manner. It is believed this investigation will contribute positively towards holistic management of schizophrenia. There will be two surveys. In the pharmacological intervention survey, five popular drugs for schizophrenia will be chosen and their efficacy as well as harmful side effects will be evaluated on a scale of 0 -10. This survey will be done by psychiatrists. In the second survey, each element of therapeutic intervention and psychosocial factors will be evaluated according to their significance on a scale of 0 - 10. This survey will be done by care givers, psychologists, case managers and case workers. For the first survey, professional bodies of psychiatrists in English speaking countries will be contacted to request them to ask their members to participate in the survey. For the second survey, professional bodies of clinical psychologist and care givers in English speaking countries will be contacted to request them to ask their members to participate in the survey. Additionally, for both the surveys, relevant professionals will be contacted through personal contact networks. For both the surveys, mean, mode, median, standard deviation and net promoter score will be calculated for each factor and then presented in a statistically significant manner. Subsequently each factor will be ranked according to their statistical significance. Additionally, country specific variation will be highlighted to identify the variation pattern. The results of these surveys will identify the relative significance of each type of pharmacological intervention, each type of therapeutic intervention and each type of psychosocial factor. The determination of this relative importance will definitely contribute to the improvement in quality of life for individuals with schizophrenia.
Keywords: Schizophrenia, holistic management, antipsychotics, quality of life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837217 E-Commerce Adoption and Implementation in Automobile Industry: A Case Study
Authors: Amitrajit Sarkar
Abstract:
The use of Electronic Commerce (EC) technologies enables Small Medium Enterprises (SMEs) to improve their efficiency and competitive position. Much of the literature proposes an extensive set of benefits for organizations that choose to adopt and implement ECommerce systems. Factors of Business –to-business (B2B) E-Commerce adoption and implementation have been extensively investigated. Despite enormous attention given to encourage Small Medium Enterprises (SMEs) to adopt and implement E-Commerce, little research has been carried out in identifying the factors of Business-to-Consumer ECommerce adoption and implementation for SMEs. To conduct the study, Tornatsky and Fleischer model was adopted and tested in four SMEs located in Christchurch, New Zealand. This paper explores the factors that impact the decision and method of adoption and implementation of ECommerce systems in automobile industry. Automobile industry was chosen because the product they deal with i.e. cars are not a common commodity to be sold online, despite this fact the eCommerce penetration in automobile industry is high. The factors that promote adoption and implementation of E-Commerce technologies are discussed, together with the barriers. This study will help SME owners to effectively handle the adoption and implementation process and will also improve the chance of successful E-Commerce implementation. The implications of the findings for managers, consultants, and government organizations engaged in promoting E-Commerce adoption and implementation in small businesses and future research are discussed.Keywords: E-Commerce in SMEs, E-Commerce in automobile industry, B2C E-Commerce, E-Commerce adoption and Implementation, E-Commerce Website Implementation, E-Commerce Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4794216 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856215 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647214 Factors for Entry Timing Choices Using Principal Axis Factorial Analysis and Logistic Regression Model
Authors: Mat Isa, C. M., Mohd Saman, H., Mohd Nasir, S. R., Jaapar, A.
Abstract:
International market expansion involves a strategic process of market entry decision through which a firm expands its operation from domestic to the international domain. Hence, entry timing choices require the needs to balance the early entry risks and the problems in losing opportunities as a result of late entry into a new market. Questionnaire surveys administered to 115 Malaysian construction firms operating in 51 countries worldwide have resulted in 39.1 percent response rate. Factor analysis was used to determine the most significant factors affecting entry timing choices of the firms to penetrate the international market. A logistic regression analysis used to examine the firms’ entry timing choices, indicates that the model has correctly classified 89.5 per cent of cases as late movers. The findings reveal that the most significant factor influencing the construction firms’ choices as late movers was the firm factor related to the firm’s international experience, resources, competencies and financing capacity. The study also offers valuable information to construction firms with intention to internationalize their businesses.
Keywords: Factors, early movers, entry timing choices, late movers, Logistic Regression Model, Principal Axis Factorial Analysis, Malaysian construction firms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232213 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898212 Optimal Sliding Mode Controller for Knee Flexion During Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.
Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181211 C-LNRD: A Cross-Layered Neighbor Route Discovery for Effective Packet Communication in Wireless Sensor Network
Authors: K. Kalaikumar, E. Baburaj
Abstract:
One of the problems to be addressed in wireless sensor networks is the issues related to cross layer communication. Cross layer architecture shares the information across the layer, ensuring Quality of Services (QoS). With this shared information, MAC protocol adapts effective functionality maintenance such as route selection on changeable sensor network environment. However, time slot assignment and neighbour route selection time duration for cross layer have not been carried out. The time varying physical layer communication over cross layer causes high traffic load in the sensor network. Though, the traffic load was reduced using cross layer optimization procedure, the computational cost is high. To improve communication efficacy in the sensor network, a self-determined time slot based Cross-Layered Neighbour Route Discovery (C-LNRD) method is presented in this paper. In the presented work, the initial process is to discover the route in the sensor network using Dynamic Source Routing based Medium Access Control (MAC) sub layers. This process considers MAC layer operation with dynamic route neighbour table discovery. Then, the discovered route path for packet communication employs Broad Route Distributed Time Slot Assignment method on Cross-Layered Sensor Network system. Broad Route means time slotting on varying length of the route paths. During packet communication in this sensor network, transmission of packets is adjusted over the different time with varying ranges for controlling the traffic rate. Finally, Rayleigh fading model is developed in C-LNRD to identify the performance of the sensor network communication structure. The main task of Rayleigh Fading is to measure the power level of each communication under MAC sub layer. The minimized power level helps to easily reduce the computational cost of packet communication in the sensor network. Experiments are conducted on factors such as power factor, on packet communication, neighbour route discovery time, and information (i.e., packet) propagation speed.
Keywords: Medium access control, neighbour route discovery, wireless sensor network, Rayleigh fading, distributed time slot assignment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774210 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: Intrusion prevention, network security, optimal policy, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022209 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyse huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic wellbeing is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that support the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.
Keywords: COVID-19, big data, data analysis, indexing, NoSQL, sharding, scalability, poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67208 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study
Authors: M. Kosacka, I. Kudelska
Abstract:
Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.Keywords: Dismantling, end of life vehicle, sustainability, storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366207 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321206 Optimum Replacement Policies for Kuwait Passenger Transport Company Busses: Case Study
Authors: Hilal A. Abdelwali, Elsayed E.M. Ellaimony, Ahmad E.M. Murad, Jasem M.S. Al-Rajhi
Abstract:
Due to the excess of a vehicle operation through its life, some elements may face failure and deteriorate with time. This leads us to carry out maintenance, repair, tune up or full overhaul. After a certain period, the vehicle elements deteriorations increase with time which causes a very high increase of doing the maintenance operations and their costs. However, the logic decision at this point is to replace the current vehicle by a new one with minimum failure and maximum income. The importance of studying vehicle replacement problems come from the increase of stopping days due to many deteriorations in the vehicle parts. These deteriorations increase year after year causing an increase of operating costs and decrease the vehicle income. Vehicle replacement aims to determine the optimum time to keep, maintain, overhaul, renew and replace vehicles. This leads to an improvement in vehicle income, total operating costs, maintenance cost, fuel and oil costs, ton-kilometers, vehicle and engine performance, vehicle noise, vibration, and pollution. The aim of this paper is to find the optimum replacement policies of Kuwait Passenger Transport Company (KPTCP) fleet of busses. The objective of these policies is to maximize the busses pure profits. The dynamic programming (D.P.) technique is used to generate the busses optimal replacement policies
Keywords: Replacement Problem, Automotive Replacement, Dynamic Programming, Equipment Replacement, K.P.T.C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530