Search results for: POME based lipase.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11335

Search results for: POME based lipase.

9775 Evaluation of Risks in New Product Innovation

Authors: Emre Alptekin, Damla Yalçınyiğit, Gülfem Alptekin

Abstract:

In highly competitive environments, a growing number of companies must regularly launch new products speedily and successfully. A company-s success is based on the systematic, conscious product designing method which meets the market requirements and takes risks as well as resources into consideration. Research has found that developing and launching new products are inherently risky endeavors. Hence in this research, we aim at introducing a risk evaluation framework for the new product innovation process. Our framework is based on the fuzzy analytical hierarchy process (FAHP) methodology. We have applied all the stages of the framework on the risk evaluation process of a pharmaceuticals company.

Keywords: Evaluation, risks, product innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
9774 Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV

Authors: Manjit Singh

Abstract:

Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale.

Keywords: ECG, heart rate variability, HRV, multiscale entropy, sampling frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
9773 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm

Authors: Yesubai Rubavathi Charles, Ravi Ramraj

Abstract:

In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.

Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
9772 Morpho-Phonological Modelling in Natural Language Processing

Authors: Eleni Galiotou, Angela Ralli

Abstract:

In this paper we propose a computational model for the representation and processing of morpho-phonological phenomena in a natural language, like Modern Greek. We aim at a unified treatment of inflection, compounding, and word-internal phonological changes, in a model that is used for both analysis and generation. After discussing certain difficulties cuase by well-known finitestate approaches, such as Koskenniemi-s two-level model [7] when applied to a computational treatment of compounding, we argue that a morphology-based model provides a more adequate account of word-internal phenomena. Contrary to the finite state approaches that cannot handle hierarchical word constituency in a satisfactory way, we propose a unification-based word grammar, as the nucleus of our strategy, which takes into consideration word representations that are based on affixation and [stem stem] or [stem word] compounds. In our formalism, feature-passing operations are formulated with the use of the unification device, and phonological rules modeling the correspondence between lexical and surface forms apply at morpheme boundaries. In the paper, examples from Modern Greek illustrate our approach. Morpheme structures, stress, and morphologically conditioned phoneme changes are analyzed and generated in a principled way.

Keywords: Morpho-Phonology, Natural Language Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
9771 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
9770 A Hybrid Feature Subset Selection Approach based on SVM and Binary ACO. Application to Industrial Diagnosis

Authors: O. Kadri, M. D. Mouss, L.H. Mouss, F. Merah

Abstract:

This paper proposes a novel hybrid algorithm for feature selection based on a binary ant colony and SVM. The final subset selection is attained through the elimination of the features that produce noise or, are strictly correlated with other already selected features. Our algorithm can improve classification accuracy with a small and appropriate feature subset. Proposed algorithm is easily implemented and because of use of a simple filter in that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through a real Rotary Cement kiln dataset. The results show that our algorithm outperforms existing algorithms.

Keywords: Binary Ant Colony algorithm, Support VectorMachine, feature selection, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
9769 A Performance Evaluation of Oscillation Based Test in Continuous Time Filters

Authors: Eduardo Romero, Marcelo Costamagna, Gabriela Peretti, Carlos Marqués

Abstract:

This work evaluates the ability of OBT for detecting parametric faults in continuous-time filters. To this end, we adopt two filters with quite different topologies as cases of study and a previously reported statistical fault model. In addition, we explore the behavior of the test schemes when a particular test condition is changed. The new data reported here, obtained from a fault simulation process, reveal a lower performance of OBT not observed in previous work using single-deviation faults, even under the change in the test condition.

Keywords: Testing, analog fault simulation, analog filter test, oscillation based test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
9768 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

This research focused on comparing the critical thinking of the teacher students before and after using Miller’s Model learning activities and investigating their opinions. The sampling groups were (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: Critical thinking, Miller’s model, Opinions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
9767 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection

Authors: P. Bountris, E. Farantatos, N. Apostolou

Abstract:

Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.

Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
9766 The Consumer Private Space: What is and How it can be Approached without Affecting the Consumer's Privacy

Authors: Calin Veghes

Abstract:

The concept of privacy, seen in connection to the consumer's private space and personalization, has recently gained a higher importance as a consequence of the increasing marketing efforts of the organizations based on the capturing, processing and usage of consumer-s personal data.Paper intends to provide a definition of the consumer-s private space based on the types of personal data the consumer is willing to disclose, to assess the attitude toward personalization and to identify the means preferred by consumers to control their personal data and defend their private space. Several implications generated through the definition of the consumer-s private space are identified and weighted from both the consumers- and organizations- perspectives.

Keywords: Consumer private space, personalization, privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
9765 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials

Authors: Sajjad Farashi

Abstract:

Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.

Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
9764 Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

Authors: Ljubomir Nikolic, Larisa Trichtchenko

Abstract:

The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation. 

Keywords: Space weather, numerical modeling, coronal field, solar wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
9763 Statistical Properties and Performance of Ecological Indices Based On Relative Abundances

Authors: Gebriel M. Shamia

Abstract:

The Improved Generalized Diversity Index (IGDI) has been proposed as a tool that can be used to identify areas that have high conservation value and measure the ecological condition of an area. IGDI is based on the species relative abundances. This paper is concerned with particular attention is given to comparisons involving the MacArthur model of species abundances. The properties and performance of various species indices were assessed. Both IGDI and species richness increased with sampling area according to a power function. IGDI were also found to be acceptable ecological indicators of conditions and consistently outperformed coefficient of conservatism indices.

Keywords: Statistical ecology, MacArthur model, Functional Diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
9762 Disinfection of Water by Adsorption with Electrochemical Regeneration

Authors: S. N. Hussain, H. M. A. Asghar, E. P. L. Roberts, N. W. Brown

Abstract:

Arvia®, a spin-out company of University of Manchester, UK is commercialising a water treatment technology for the removal of low concentrations of organics from water. This technology is based on the adsorption of organics onto graphite based adsorbents coupled with their electrochemical regeneration in a simple electrochemical cell. In this paper, the potential of the process to adsorb microorganisms and electrochemically disinfect them present in water has been demonstrated. Bench scale experiments have indicated that the process of adsorption using graphite adsorbents with electrochemical regeneration can be used for water disinfection effectively. The most likely mechanisms of disinfection of water through this process include direct electrochemical oxidation and electrochemical chlorination.

Keywords: Arvia, Adsorption, Electrochemical Regeneration, Nyex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
9761 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks

Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor

Abstract:

The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.

Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
9760 Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes

Authors: Akshaya Kumar Verma, Puspendu Bhunia*, Rajesh Roshan Dash

Abstract:

Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH.

Keywords: Coagulation, Color removal, Magnesium chloride, Textile wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430
9759 Decentralised Edge Authentication in the Industrial Enterprise IoT Space

Authors: C. P. Autry, A.W. Roscoe

Abstract:

Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.

Keywords: Authentication, enterprise IoT cybersecurity, public key infrastructure, trusted third party.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
9758 Response of the Residential Building Structureon Load Technical Seismicity due to Mining Activities

Authors: V. Salajka, Z. Kaláb, J. Kala, P. Hradil

Abstract:

In the territories where high-intensity earthquakes are frequent is paid attention to the solving of the seismic problems. In the paper are described two computational model variants based on finite element method of the construction with different subsoil simulation (rigid or elastic subsoil) is used. For simulation and calculations program system based on method final elements ANSYS was used. Seismic responses calculations of residential building structure were effected on loading characterized by accelerogram for comparing with the responses spectra method.

Keywords: Accelerogram, ANSYS, mining induced seismic, residential building structure, spectra, subsoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
9757 ANN-Based Classification of Indirect Immuno Fluorescence Images

Authors: P. Soda, G.Iannello

Abstract:

In this paper we address the issue of classifying the fluorescent intensity of a sample in Indirect Immuno-Fluorescence (IIF). Since IIF is a subjective, semi-quantitative test in its very nature, we discuss a strategy to reliably label the image data set by using the diagnoses performed by different physicians. Then, we discuss image pre-processing, feature extraction and selection. Finally, we propose two ANN-based classifiers that can separate intrinsically dubious samples and whose error tolerance can be flexibly set. Measured performance shows error rates less than 1%, which candidates the method to be used in daily medical practice either to perform pre-selection of cases to be examined, or to act as a second reader.

Keywords: Artificial neural networks, computer aided diagnosis, image classification, indirect immuno-fluorescence, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
9756 Enhancing the Performance of Wireless Sensor Networks Using Low Power Design

Authors: N. Mahendran, R. Madhuranthi

Abstract:

Wireless sensor networks (WSNs), are constantly in demand to process information more rapidly with less energy and area cost. Presently, processor based solutions have difficult to achieve high processing speed with low-power consumption. This paper presents a simple and accurate data processing scheme for low power wireless sensor node, based on reduced number of processing element (PE). The presented model provides a simple recursive structure (SRS) to process the sampled data in the wireless sensor environment and to reduce the power consumption in wireless sensor node. Based on this model, to process the incoming samples and produce a smaller amount of data sufficient to reconstruct the original signal. The ModelSim simulator used to simulate SRS structure. Functional simulation is carried out for the validation of the presented architecture. Xilinx Power Estimator (XPE) tool is used to measure the power consumption. The experimental results show the average power consumption of 91 mW; this is 42% improvement compared to the folded tree architecture.

Keywords: Power consumption, energy efficiency, low power WSN node, recursive structure, sleep/wake scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
9755 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
9754 PZ: A Z-based Formalism for Modeling Probabilistic Behavior

Authors: Hassan Haghighi

Abstract:

Probabilistic techniques in computer programs are becoming more and more widely used. Therefore, there is a big interest in the formal specification, verification, and development of probabilistic programs. In our work-in-progress project, we are attempting to make a constructive framework for developing probabilistic programs formally. The main contribution of this paper is to introduce an intermediate artifact of our work, a Z-based formalism called PZ, by which one can build set theoretical models of probabilistic programs. We propose to use a constructive set theory, called CZ set theory, to interpret the specifications written in PZ. Since CZ has an interpretation in Martin-L¨of-s theory of types, this idea enables us to derive probabilistic programs from correctness proofs of their PZ specifications.

Keywords: formal specification, formal program development, probabilistic programs, CZ set theory, type theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
9753 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multicriteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development show that PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: GIS, Site Suitability Analysis, Tidal Current Energy Resource Assessment, WebGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
9752 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System

Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema

Abstract:

Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.

Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
9751 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: Adaptive differentiators, Microsoft Flight Simulator, MQ-1 predator, second order sliding modes, Zlin-142.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
9750 Scale-Space Volume Descriptors for Automatic 3D Facial Feature Extraction

Authors: Daniel Chen, George Mamic, Clinton Fookes, Sridha Sridharan

Abstract:

An automatic method for the extraction of feature points for face based applications is proposed. The system is based upon volumetric feature descriptors, which in this paper has been extended to incorporate scale space. The method is robust to noise and has the ability to extract local and holistic features simultaneously from faces stored in a database. Extracted features are stable over a range of faces, with results indicating that in terms of intra-ID variability, the technique has the ability to outperform manual landmarking.

Keywords: Scale space volume descriptor, feature extraction, 3D facial landmarking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
9749 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi

Abstract:

Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.

Keywords: RFID, asset tracking system, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
9748 Blind Identification of MA Models Using Cumulants

Authors: Mohamed Boulouird, Moha M'Rabet Hassani

Abstract:

In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize third- and fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the Gauss-Newton algorithms are exposed. An algorithm based on the joint-diagonalization of the fourth-order cumulant matrices (FOSI) is also considered, as well as an improved version of the classical C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of fourth-order cumulants. To illustrate the effectiveness of our methods, various simulation examples are presented.

Keywords: Cumulants, Identification, MA models, Parameter estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
9747 Recognition-based Segmentation in Persian Character Recognition

Authors: Mohsen Zand, Ahmadreza Naghsh Nilchi, S. Amirhassan Monadjemi

Abstract:

Optical character recognition of cursive scripts presents a number of challenging problems in both segmentation and recognition processes in different languages, including Persian. In order to overcome these problems, we use a newly developed Persian word segmentation method and a recognition-based segmentation technique to overcome its segmentation problems. This method is robust as well as flexible. It also increases the system-s tolerances to font variations. The implementation results of this method on a comprehensive database show a high degree of accuracy which meets the requirements for commercial use. Extended with a suitable pre and post-processing, the method offers a simple and fast framework to develop a full OCR system.

Keywords: OCR, Persian, Recognition, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
9746 Using PFA in Feature Analysis and Selection for H.264 Adaptation

Authors: Nora A. Naguib, Ahmed E. Hussein, Hesham A. Keshk, Mohamed I. El-Adawy

Abstract:

Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.

Keywords: Adaptation, feature selection, H.264, Principal Feature Analysis (PFA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607