Search results for: safe bearing pressure
354 Evaluating and Measuring the Performance Parameters of Agricultural Wheels
Authors: Ali Roozbahani, Aref Mardani, Roohollah Jokar, Hamid Taghavifar
Abstract:
Evaluating and measuring the performance parameters of wheels and tillage equipments under controlled conditions obligates the use of soil bin facility. In this research designing, constructing and evaluating a single-wheel tester has been studied inside a soil bin. The tested wheel was directly driven by the electric motor. Vertical load was applied by a power bolt on wheel. This tester can measure required draft force, the depth of tire sinkage, contact area between wheel and soil, and soil stress at different depths and in the both alongside and perpendicular to the direction of traversing. In order to evaluate the system preparation, traction force was measured by the connected S-shaped load cell as arms between the wheel-tester and carriage. Treatments of forward speed, slip, and vertical load at a constant pressure were investigated in a complete randomized block design. The results indicated that the traction force increased at constant wheel load. The results revealed that the maximum traction force was observed within the %15 of slip.
Keywords: Slip, single wheel-tester, soil bin, soil–machine, speed, traction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324353 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.
Keywords: CFD simulation, internal combustion engine, intake system, dynamometer test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246352 Enabling Factors towards Safety Improvement for Industrialised Building System (IBS)
Authors: Nasyairi Mat Nasir, Zulhabri Ismail, Faridah Ismail, Sharifah Nur Aina Syed Alwee, Masnizan Che Mat
Abstract:
The utilisation of Industrial Building System (IBS) in construction industry will lead to a safe site condition since minimum numbers of workers are required to be on-site, timely material delivery, systematic component storage, reduction of construction material and waste. These matters are being promoted in the Construction Industry Master Plan (CIMP 2006-2015). However, the enabling factors of IBS that will foster a safer working environment are indefinite; on that basis a research has been conducted. The purpose of this paper is to discuss and identify the relevant factors towards safety improvement for IBS. A quantitative research by way of questionnaire surveys have been conducted to 314 construction companies. The target group was Grade 5 to Grade 7 contractors registered with Construction Industry Development Board (CIDB) which specialise in IBS. The findings disclosed seven factors linked to the safety improvement of IBS construction site in Malaysia. The factors were historical, economic, psychological, technical, procedural, organisational and the environmental factors. From the findings, a psychological factor ranked as the highest and most crucial factor contributing to safer IBS construction site. The psychological factor included the self-awareness and influences from workmates behaviour. Followed by organisational factors, where project management style will encourage the safety efforts. From the procedural factors, it was also found that training was one of the significant factors to improve safety culture of IBS construction site. Another important finding that formed as a part of the environmental factor was storage of IBS components, in which proper planning of the layout would able to contribute to a safer site condition. To conclude, in order to improve safety of IBS construction site, a welltrained and skilled workers are required for IBS projects, thus proper training is permissible and should be emphasised.
Keywords: Enabling Factors, Industrialised Building System, Safety Improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933351 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.
Keywords: Corrugated absorber, double flow, exergy efficiency, solar air heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938350 A Semi-Automatic Mechanism Used in the Peritoneal Dialysis Connection
Authors: I-En Lin, Feng-Jung Yang
Abstract:
In addition to kidney transplant, renal replacement therapy involves hemodialysis and peritoneal dialysis (PD). PD possesses advantages such as maintaining stable physiological blood status and blood pressure, alleviating anemia, and improving mobility, which make it an ideal method for at-home dialysis treatment. However, potential danger still exists despite the numerous advantages of PD, particularly when patients require dialysis exchange four to five times a day, during which improper operation can easily lead to peritonitis. The process of draining and filling is called an exchange and takes about 30 to 40 minutes. Connecting the transfer set requires sterile technique. Transfer set may require a new cap each time that it disconnects from the bag after an exchange. There are many chances to get infection due to unsafe behavior (ex: hand tremor, poor eyesight and weakness, cap fall-down). The proposed semi-automatic connection mechanism used in the PD can greatly reduce infection chances. This light-weight connection device is portable. The device also does not require using throughout the entire process. It is capable of significantly improving quality of life. Therefore, it is very promising to adopt in home care application.
Keywords: Automatic connection, catheter, glomerulonephritis, peritoneal dialysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669349 The Effectiveness of Synthesizing A-Pillar Structures in Passenger Cars
Authors: Chris Phan, Yong Seok Park
Abstract:
The Toyota Camry is one of the best-selling cars in America. It is economical, reliable, and most importantly, safe. These attributes allowed the Camry to be the trustworthy choice when choosing dependable vehicle. However, a new finding brought question to the Camry’s safety. Since 1997, the Camry received a “good” rating on its moderate overlap front crash test through the Insurance Institute of Highway Safety. In 2012, the Insurance Institute of Highway Safety introduced a frontal small overlap crash test into the overall evaluation of vehicle occupant safety test. The 2012 Camry received a “poor” rating on this new test, while the 2015 Camry redeemed itself with a “good” rating once again. This study aims to find a possible solution that Toyota implemented to reduce the severity of a frontal small overlap crash in the Camry during a mid-cycle update. The purpose of this study is to analyze and evaluate the performance of various A-pillar shapes as energy absorbing structures in improving passenger safety in a frontal crash. First, A-pillar structures of the 2012 and 2015 Camry were modeled using CAD software, namely SolidWorks. Then, a crash test simulation using ANSYS software, was applied to the A-pillars to analyze the behavior of the structures in similar conditions. Finally, the results were compared to safety values of cabin intrusion to determine the crashworthy behaviors of both A-pillar structures by measuring total deformation. This study highlights that it is possible that Toyota improved the shape of the A-pillar in the 2015 Camry in order to receive a “good” rating from the IIHS safety evaluation once again. These findings can possibly be used to increase safety performance in future vehicles to decrease passenger injury or fatality.
Keywords: A-pillar, crashworthiness, design synthesis, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776348 Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli
Authors: A. Abdulla Khairi Mohamed, Mohamed Gamal Abdelmonem, Gehan Selim
Abstract:
Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.
Keywords: Walkability, sustainability, liveability, accessibility, safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407347 Deoxygenation of Beef Fat over Pd Supported Mesoporous TiO2 Catalyst Prepared by Single-Step Sol-Gel Process with Surfactant Template
Authors: Tossaporn Jindarat, Siriporn Jongpatiwut, Somchai Osuwan, Suchada Butnark
Abstract:
Deoxygenation of beef fat for the production of hydrogenated biodiesel is investigated in a high pressure continuous flow fixed bed reactor over palladium-supported mesoporous titania catalyst synthesized via a combined single-step sol-gel process with surfactant-assisted templating method (SATM). The catalyst possessed a mesoporous charactheristic with high surface area and narrow pore size distribution. The main products of all Pd/TiO2 catalysts are n-heptadecane (n-C17) and n-pentadecane (n-C15) resulting from decarbonylation reaction. Pd/TiO2 catalyst synthesized via a combined single-step sol-gel process with SATM (SSSG) gave higher activity and selectivity to the desired products when compared to IWI/SG-TiO2 and IWI/P25-TiO2, respectively. SSSG catalyst gave the average conversion up to 80-90 % and 80 % for the selectivity in diesel range hydrocarbons. This result may cause by the higher surface area and the ability in dispersion of palladium ion in mesoporous of TiO2 during sol-gel process.
Keywords: Beef fat, Deoxygenation, Hydrogenated biodiesel, Pd/TiO2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444346 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water
Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün
Abstract:
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052345 Coded Transmission in Synthetic Transmit Aperture Ultrasound Imaging Method
Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski
Abstract:
The paper presents the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Signal-to-noise ratio and penetration depth are improved maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16-bit Golay coded sequences at nominal frequencies 4 MHz was used. Single element transmission aperture was used to generate a spherical wave covering the full image region and all the elements received the echo signals. The comparison of 2D ultrasound images of the wire phantom as well as of the tissue mimicking phantom is presented to demonstrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.Keywords: Golay coded sequences, radiation pattern, synthetic aperture, ultrasound imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131344 Studies on Lucrative Design of Waste Heat Recovery System for Air Conditioners
Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith
Abstract:
In this paper comprehensive studies have been carried out for the design optimization of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Numerical studies have been carried for the geometry optimization of a waste heat recovery system for domestic air conditioners. Numerical computations have been carried out using a validated 2d pressure based, unsteady, 2nd-order implicit, SST k-ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. At identical inflow and boundary conditions various geometries were tried and effort has been taken for proposing the best design criteria. Several combinations of pipe line shapes viz., straight and spiral with different number of coils for the radiator have been attempted and accordingly the design criteria has been proposed for the waste heat recovery system design. We have concluded that, within the given envelope, the geometry optimization is a meaningful objective for getting better performance of waste heat recovery system for air conditioners.Keywords: Air-conditioning system, Energy conversion system, Hot water production from waste heat, Waste heat recovery system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739343 Design Transformation to Reduce Cost in Irrigation Using Value Engineering
Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan
Abstract:
Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.
Keywords: Desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461342 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: Computational mechanics, lower bound method, reinforced concrete slabs, yield-line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095341 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions
Authors: Manisha Rathi, Thierry Chaussalet
Abstract:
Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.Keywords: Admission, Fuzzy, Regression, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420340 Development of a Water-Jet Assisted Underwater Laser Cutting Process
Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath
Abstract:
We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.Keywords: Laser, underwater cutting, water-jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4660339 Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.Keywords: alcohol/ether fuel, Cu-Zn-Al-Zr slurry catalyst, global kinetics, slurry reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5521338 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions
Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin
Abstract:
One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203337 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171336 Radio-Frequency Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil G. Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold Radio-Frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for cold RF plasma application on paper documents, developed within a research project. The equipment consists in two modules: the first one is designed for decontamination and cleaning treatments of any type of paper supports, while the second one can be used for coating friable papers with adequate polymers, for protection purposes. All these operations are carried out in cold radio-frequency plasma, working in gaseous nitrogen, at low pressure. In order to optimize the equipment parameters ancient paper samples infested with microorganisms have been treated in nitrogen plasma and the decontamination effects, as well as changes in surface properties (color, pH) were assessed. The microbiological analysis revealed complete decontamination at 6 minutes treatment duration; only minor modifications of the surface pH were found and the colorimetric analysis showed a slight yellowing of the support.Keywords: Cultural heritage, nitrogen plasma, paper support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604335 Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor
Authors: Vijay Sodhi, Ajay Bansal
Abstract:
The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.Keywords: Trickle Bed Reactor, Dynamic Liquid Saturation, Foaming, Flow Regime Transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834334 Reactive Absorption of Hydrogen Sulfide in Aqueous Ferric Sulfate Solution
Authors: Z. Gholami, M. Torabi Angaji, F. Gholami, S. A. Razavi Alavi
Abstract:
Many commercial processes are available for the removal of H2S from gaseous streams. The desulfurization of gas streams using aqueous ferric sulfate solution as washing liquor is studied. Apart from sulfur, only H2O is generated in the process, and consequently, no waste treatment facilities are required. A distinct advantage of the process is that the reaction of H2S with is so rapid and complete that there remains no danger of discharging toxic waste gas. In this study, the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solution has been studied and design calculations for equipments have been done and effective operation parameters on this process considered. Results show that high temperature and low pressure are suitable for absorption reaction. Variation of hydrogen sulfide concentration and Fe3+ concentration with time in absorption reaction shown that the reaction of ferric sulfate and hydrogen sulfide is first order with respect to the both reactant. At low Fe2(SO4)3 concentration the absorption rate of H2S increase with increasing the Fe2(SO4)3 concentration. At higher concentration a decrease in the absorption rate was found. At higher concentration of Fe2(SO4)3, the ionic strength and viscosity of solution increase remarkably resulting in a decrease of solubility, diffusivity and hence absorption rate.Keywords: Absorption, Fe2(SO4)3, H2S, Reactive Absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3943333 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell
Authors: D. S. Fardhyanti, A. Damayanti
Abstract:
The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).
Keywords: Bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772332 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details
Authors: Wentao He, Jingxi Liu, De Xie
Abstract:
It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.
Keywords: Crack path, Fatigue crack, Fatigue live, FCG-System, Virtual crack closure technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481331 A Model of Market Segmentation for the Customers of Mellat Bank in Iran
Authors: Nader Gharibnavaz, Hossein Yazdi
Abstract:
If organizations like Mellat Bank want to identify its customer market completely to reach its specified goals, it can segment the market to offer the product package to the right segment. Our objective is to offer a segmentation model for Iran banking market in Mellat bank view. The methodology of this project is combined by “segmentation on the basis of four part-quality variables" and “segmentation on the basis of different in means". Required data are gathered from E-Systems and researcher personal observation. Finally, the research offers the organization that at first step form a four dimensional matrix with 756 segments using four variables named value-based, behavioral, activity style, and activity level, and at the second step calculate the means of profit for every cell of matrix in two distinguished work level (levels α1:normal condition and α2: high pressure condition) and compare the segments by checking two conditions that are 1- homogeneity every segment with its sub segment and 2- heterogeneity with other segments, and so it can do the necessary segmentation process. After all, the last offer (more explained by an operational example and feedback algorithm) is to test and update the model because of dynamic environment, technology, and banking system.Keywords: market segmentation model, banking system, Mellat bank
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287330 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece
Authors: M. S. Reza, M. Hamdi, A.S. Hadi
Abstract:
The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821329 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868328 Investigation on the HRSG Installation at South Pars Gas Complex Phases 2&3
Authors: R. Moradifar, M. Masahebfard, M. Zahir
Abstract:
In this article the investigation about installation heat recovery steam generation (HRSG) on the exhaust of turbo generators of phases 2&3 at South Pars Gas Complex is presented. The temperature of exhaust gas is approximately 665 degree centigrade, Installation of heat recovery boiler was simulated in ThermoFlow 17.0.2 software, based on test operation data and the equipments site operation conditions in Pars exclusive economical energy area, the affect of installation HRSG package on the available gas turbine and its operation parameters, ambient temperature, the exhaust temperatures steam flow rate were investigated. Base on the results recommended HRSG package should have the capacity for 98 ton per hour high pressure steam generation this refinery, by use of exhaust of three gas turbines for each package in operation condition of each refinery at 30 degree centigrade. Besides saving energy this project will be an Environment-Friendly project. The Payback Period is estimated approximately 1.8 year, with considering Clean Development Mechanism.Keywords: HRSG, South pars Gas complex, ThermoFlow 17.0.2 software, energy, turbo generators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347327 Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor Cold Leg Small-Break Loss-of-Coolant Accident without Scram
Authors: Takeshi Takeda
Abstract:
The author conducted post-test analysis with the RELAP5/MOD3.3 code for an experiment using the ROSA/LSTF (rig of safety assessment/large-scale test facility) that simulated a 1% cold leg small-break loss-of-coolant accident under the failure of scram in a pressurized water reactor. The LSTF test assumed total failure of high-pressure injection system of emergency core cooling system. In the LSTF test, natural circulation contributed to maintain core cooling effect for a relatively long time until core uncovery occurred. The post-test analysis result confirmed inadequate prediction of the primary coolant distribution. The author created the phenomena identification and ranking table (PIRT) for each component. The author investigated the influences of uncertain parameters determined by the PIRT on the cladding surface temperature at a certain time during core uncovery within the defined uncertain ranges.
Keywords: LSTF, LOCA, scram, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771326 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump
Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh
Abstract:
The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.Keywords: Least Squares, Moving node, Pitching, Spirals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904325 Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection
Authors: Noraini Ahmad, Seripah Awang Kechil, Norma Mohd Basir
Abstract:
The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers.Keywords: Magnetic field, mixed Marangoni convection, similarity boundary layers, solute concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882