Search results for: land surface temperature (LST)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4575

Search results for: land surface temperature (LST)

3045 Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor Cold Leg Small-Break Loss-of-Coolant Accident without Scram

Authors: Takeshi Takeda

Abstract:

The author conducted post-test analysis with the RELAP5/MOD3.3 code for an experiment using the ROSA/LSTF (rig of safety assessment/large-scale test facility) that simulated a 1% cold leg small-break loss-of-coolant accident under the failure of scram in a pressurized water reactor. The LSTF test assumed total failure of high-pressure injection system of emergency core cooling system. In the LSTF test, natural circulation contributed to maintain core cooling effect for a relatively long time until core uncovery occurred. The post-test analysis result confirmed inadequate prediction of the primary coolant distribution. The author created the phenomena identification and ranking table (PIRT) for each component. The author investigated the influences of uncertain parameters determined by the PIRT on the cladding surface temperature at a certain time during core uncovery within the defined uncertain ranges.

Keywords: LSTF, LOCA, scram, RELAP5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
3044 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes

Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay

Abstract:

Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.

Keywords: Dynamic impact, deformable boundary conditions, finite element modeling, FEM, finite element, FE, LS-DYNA, Stainless steel pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
3043 Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

Authors: Nabil M. Muhaisen, Rajab Abdullah Hokoma

Abstract:

This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler.

Keywords: Boiler, Calculation, Efficiency, Performance. Steam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3514
3042 Hydrogen Gas Sensing Properties of Multiwalled Carbon Nanotubes Network Partially Coated with SnO2 Nanoparticles at Room Temperature

Authors: Neena Jaggi, Shivani Dhall

Abstract:

In the present work, hydrogen gas sensor of modest sensitivity utilizing functionalized multiwalled carbon nanotubes partially decorated with tin oxide nanoparticles (F-MWCNTs/SnO2) has been fabricated. This sensing material was characterized by scanning electron microscopy (SEM). In addition, a remarkable finding was that the F-MWCNTs/SnO2 sensor shows good sensitivity as compared to F-MWCNTs for low concentration (0.05-1% by volume) of H2 gas. The fabricated sensors show complete resistance recovery and good repeatability when exposed to H2 gas at the room temperature conditions.

Keywords: F-MWCNTs, SnO2 nanoparticles, Chemiresistor, I-V Characteristics, H2 Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
3041 Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production

Authors: S.S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail

Abstract:

This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents.

Keywords: biomass, decomposition, hydrogen, lignocellulosic, thermogravimetry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
3040 Cryogenic Freezing Process Optimization Based On Desirability Function on the Path of Steepest Ascent

Authors: R. Uporn, P. Luangpaiboon

Abstract:

This paper presents a comparative study of statistical methods for the multi-response surface optimization of a cryogenic freezing process. Taguchi design and analysis and steepest ascent methods based on the desirability function were conducted to ascertain the influential factors of a cryogenic freezing process and their optimal levels. The more preferable levels of the set point, exhaust fan speed, retention time and flow direction are set at -90oC, 20 Hz, 18 minutes and Counter Current, respectively. The overall desirability level is 0.7044.

Keywords: Cryogenic Freezing Process, Taguchi Design and Analysis, Response Surface Method, Steepest Ascent Method and Desirability Function Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
3039 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution

Authors: Roli Saini, Pradeep Kumar

Abstract:

A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.

Keywords: Carbofuran, coagulation, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
3038 Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

Authors: Sanwu Wang, Hongli Dang, Wenhua Xue, Darwin Shields, Xin Liu, Friederike C. Jentoft, Daniel E. Resasco

Abstract:

The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurations at the water-Pd interface promote decarbonylation of furfural.

Keywords: Ab initio molecular dynamics simulations, bio-fuels, density functional theory, liquid-solid interfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
3037 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
3036 Removal of CO2 and H2S using Aqueous Alkanolamine Solusions

Authors: Zare Aliabad, H., Mirzaei, S.

Abstract:

This work presents a theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous solutions of MDEA and DEA. In this process the acid components react with the basic alkanolamine solution via an exothermic, reversible reaction in a gas/liquid absorber. The use of amine solvents for gas sweetening has been investigated using process simulation programs called HYSYS and ASPEN. We use Electrolyte NRTL and Amine Package and Amines (experimental) equation of state. The effects of temperature and circulation rate and amine concentration and packed column and murphree efficiency on the rate of absorption were studied. When lean amine flow and concentration increase, CO2 and H2S absorption increase too. With the improvement of inlet amine temperature in absorber, CO2 and H2S penetrate to upper stages of absorber and absorption of acid gases in absorber decreases. The CO2 concentration in the clean gas can be greatly influenced by the packing height, whereas for the H2S concentration in the clean gas the packing height plays a minor role. HYSYS software can not estimate murphree efficiency correctly and it applies the same contributions in all diagrams for HYSYS software. By improvement in murphree efficiency, maximum temperature of absorber decrease and the location of reaction transfer to the stages of bottoms absorber and the absorption of acid gases increase.

Keywords: Absorber, DEA, MDEA, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17313
3035 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.

Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
3034 Border Limited Adaptive Subdivision Based On Triangle Meshes

Authors: Pichayut Peerasathien, Hiroshi Nagahashi

Abstract:

Subdivision is a method to create a smooth surface from a coarse mesh by subdividing the entire mesh. The conventional ways to compute and render surfaces are inconvenient both in terms of memory and computational time as the number of meshes will increase exponentially. An adaptive subdivision is the way to reduce the computational time and memory by subdividing only certain selected areas. In this paper, a new adaptive subdivision method for triangle meshes is introduced. This method defines a new adaptive subdivision rules by considering the properties of each triangle's neighbors and is embedded in a traditional Loop's subdivision. It prevents some undesirable side effects that appear in the conventional adaptive ways. Models that were subdivided by our method are compared with other adaptive subdivision methods

Keywords: Subdivision, loop subdivision, handle cracks, smooth surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
3033 Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface

Authors: Nor Fadzillah Mohd Mokhtar, Norihan Md Arifin, Roslinda Nazar, Fudziah Ismail, MohamedSuleiman

Abstract:

The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Daeff number is decreases.

Keywords: Deformable, Marangoni, Porous, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
3032 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park

Abstract:

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

Keywords: Target localization, ship-borne electro-optical stabilized platform, unscented Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113
3031 Haptics Enabled of ine AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
3030 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
3029 Hydrophobic Characteristics of EPDM Composite Insulators in Simulated Arid Desert Environment

Authors: Yasin Khan

Abstract:

Overhead electrical insulators form an important link in an electric power system. Along with the traditional insulators (i.e. glass and porcelain, etc) presently the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters such temperature, environmental pollution, UV-radiations, etc. which seriously effect their electrical, chemical and hydrophobic properties. The UV radiation level in the central region of Saudi Arabia is high as compared to the IEC standard for the accelerated aging of the composite insulators. Commonly used suspension type of composite EPDM (Ethylene Propylene Diene Monomer) insulator was subjected to accelerated stress aging as per modified IEC standard simulating the inland arid deserts atmospheric condition and also as per IEC-61109 standard. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that EPDM insulator loses it hydrophobic properties proportional to the intensity of UV irradiations and its rate of recovery is also very low as compared to Silicone Rubber insulator.KeywordsEPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Keywords: EPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
3028 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: Efficiency, exergy, gas turbine, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
3027 The Coupling of Photocatalytic Oxidation Processes with Activated Carbon Technologies and the Comparison of the Treatment Methods for Organic Removal from Surface Water

Authors: N. Areerachakul

Abstract:

The surface water used in this study was collected from the Chao Praya River at the lower part at the Nonthaburi bridge. It was collected and used throughout the experiment. TOC (also known as DOC) in the range between 2.5 to 5.6 mg/l were investigated in this experiment. The use of conventional treatment methods such as FeCl3 and PAC showed that TOC removal was 65% using FeCl3 and 78% using PAC (powder activated carbon). The advanced oxidation process alone showed only 35% removal of TOC. Coupling advanced oxidation with a small amount of PAC (0.05g/L) increased efficiency by upto 55%. The combined BAC with advanced oxidation process and small amount of PAC demonstrated the highest efficiency of up to 95% of TOC removal and lower sludge production compared with other methods.

Keywords: Advanced oxidation process, TOC, PAC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3026 Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets

Authors: N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy

Abstract:

In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.

Keywords: Laser welding, Butt weld, 304 SS, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4986
3025 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace

Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia

Abstract:

In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.

Keywords: α-Alumina, Consolidation, Matrix Ceramics, Powdery composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
3024 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions

Authors: Jamal S. Yassin

Abstract:

This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.

Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
3023 Engineering Study and Equipment Design: Effects of Temperature and design variables on Yield of a Multi-Stage Distillator

Authors: A.Diaf, Z.Tigrine, H. Aburideh, D.Tassalit , F.Alaoui, B .Abbad

Abstract:

The distillation process in the general sense is a relatively simple technique from the standpoints of its principles. When dedicating distillation to water treatment and specifically producing fresh water from sea, ocean and/ briny waters it is interesting to notice that distillation has no limitations or domains of applicability regarding the nature or the type of the feedstock water. This is not the case however for other techniques that are technologically quite complex, necessitate bigger capital investments and are limited in their usability. In a previous paper we have explored some of the effects of temperature on yield. In this paper, we continue building onto that knowledge base and focus on the effects of several additional engineering and design variables on productivity.

Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
3022 Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.

Keywords: Rockfall, Slope Shape, Moving Path, SurfaceRoughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
3021 The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages

Authors: Z. W. Zhong, C. Xu, W. K. Choi

Abstract:

To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.

Keywords: FOWLP strength, surface roughness, three-point bending, grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
3020 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
3019 Haptics Enabled Offline AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
3018 CFD Simulation of Surge Wave Generated by Flow-Like Landslides

Authors: Liu-Chao Qiu

Abstract:

The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.

Keywords: Flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
3017 Increase of Heat Index over Bangladesh: Impact of Climate Change

Authors: Mohammad Adnan Rajib, Md.Rubayet Mortuza, Saranah Selmi, Asif Khan Ankur, Md. Mujibur Rahman

Abstract:

Heat Index describes the combined effect of temperature and humidity on human body. This combined effect is causing a serious threat to the health of people because of the changing climate. With climate change, climate variability and thus the occurrence of heat waves is likely to increase. Evidence is emerging from the analysis of long-term climate records of an increase in the frequency and duration of extreme temperature events in all over Bangladesh particularly during summer. Summer season has prolonged while winters have become short in Bangladesh. Summers have become hotter and thus affecting the lives of the people engaged in outdoor activities during scorching sun hours. In 2003 around 62 people died due to heat wave across the country. In this paper Bangladesh is divided in four regions and heat index has been calculated from 1960 to 2010 in these regions of the country. The aim of this paper is to identify the spots most vulnerable to heat strokes and heat waves due to high heat index. The results show upward trend of heat index in almost all the regions of Bangladesh. The highest increase in heat index value has been observed in areas of South-west region and North-west Region. The highest change in average heat index has been found in Jessore by almost 5.50C.

Keywords: Anomaly, Heat index, Relative humidity, Temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
3016 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447