Search results for: integrated land use and transport models
2754 Proposal for a Model of Economic Integration for the Development of Industry in Cabinda, Angola
Authors: T. H. Bitebe, T. M. Lima, F. Charrua-Santos, C. J. Matias Oliveira
Abstract:
This study aims to present a proposal for an economic integration model for the development of the manufacturing industry in Cabinda, Angola. It seeks to analyze the degree of economic integration of Cabinda and the dynamics of the manufacturing industry. Therefore, in the same way, to gather information to support the decision-making for public financing programs that will aim at the disengagement of the manufacturing industry in Angola and Cabinda in particular. The Cabinda Province is the 18th of Angola, the enclave is located in a privileged area of the African and arable land.
Keywords: Economic integration, industrial development, Cabinda industry, Angola.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8842753 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures
Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma
Abstract:
A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.Keywords: Assamese, Recognition, LPC, Spectral, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19912752 Design of Extremum Seeking Control with PD Accelerator and its Application to Monod and Williams-Otto Models
Authors: Hitoshi Takata, Tomohiro Hachino, Masaki Horai, Kazuo Komatsu
Abstract:
In this paper, we are concerned with the design and its simulation studies of a modified extremum seeking control for nonlinear systems. A standard extremum seeking control has a simple structure, but it takes a long time to reach an optimal operating point. We consider a modification of the standard extremum seeking control which is aimed to reach the optimal operating point more speedily than the standard one. In the modification, PD acceleration term is added before an integrator making a principal control, so that it enables the objects to be regulated to the optimal point smoothly. This proposed method is applied to Monod and Williams-Otto models to investigate its effectiveness. Numerical simulation results show that this modified method can improve the time response to the optimal operating point more speedily than the standard one.Keywords: Extremum seeking control, Monod model, Williams- Otto model, PD acceleration term, Optimal operating point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15132751 Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City
Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer
Abstract:
The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study. The PV systems are placed on the rooftop and on the south façade of the building. The south-façade PV system, operating as sunshades, consists of two strings: one at the ground floor and the other one at the first floor. According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof. The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools. The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%. The simulation outcome was compared and validated to the measured data obtained from the on-site measurement. In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design. The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.
Keywords: Building integrated photovoltaics (BIPV) design, energy analysis software, shading losses, solar radiation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932750 Effects of Cultivars, Growing and Storage Environments on Quality of Tomato
Authors: E. Thipe, T. Workneh, A. Odindo, M. Laing
Abstract:
The postharvest quality management of tomatoes is important to limit the amount of losses that occur due to deterioration between harvest and consumption. This study was undertaken to investigate the effects of pre- and postharvest integrated agrotechnologies, involving greenhouse microclimate and postharvest storage conditions, on the postharvest quality attributes of four tomato cultivars. Tomato fruit firmness, colour (hue angle (h°) and L* value), pH and total soluble solids for the cultivars Bona, Star 9037, Star 9009 and Zeal, grown in a fan-pad evaporativelycooled and an open-ended naturally-ventilated tunnel, were harvested at the mature-green stage. The tomatoes were stored for 28 days under cold storage conditions, with a temperature of 13°C and RH of 85%, and under ambient air conditions, with a temperature of 23± 2°C and RH of 52± 4%. This study has provided information on the effect of integrated pre-harvest and postharvest agro-technologies, involving greenhouse microclimate and postharvest storage environment on the postharvest quality attributes of four of the tomato cultivars in South Africa. NVT-grown tomatoes retained better textural qualities, but ripened faster by changing from green to red faster, although these were reduced under cold storage conditions. FPVT-grown tomatoes had lower firmness, but ripened slowly with higher colour attributes. With cold storage conditions, the firmness of FPVT-grown tomatoes was maintained. Cultivar Bona firmness and colour qualities depreciated the fastest, but it had higher TSS content and lower pH values. Star 9009 and Star 9037 presented better quality, by retaining higher firmness and ripening slowly, but they had the lowest TSS contents and high pH values, especially Star 9037. Cold storage improved the firmness of tomato cultivars with poor textural quality and faster colour changes.
Keywords: Greenhouse, micro-climate, tomato, postharvest quality, storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26172749 The Potential of 48V HEV in Real Driving
Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay
Abstract:
This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.Keywords: Customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35592748 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong
Abstract:
The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29012747 Construction Port Requirements for Floating Offshore Wind Turbines
Authors: Alan Crowle, Philpp Thies
Abstract:
s the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating offshore wind turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment, inter array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of size of substructures, height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However, part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost effective equipment which can be assembled in port and towed to site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment on shore means minimising highly weather dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space. The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed; however the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.
Keywords: Floating offshore wind turbine, port logistics, installation, construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5062746 Turbine Follower Control Strategy Design Based on Developed FFPP Model
Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa
Abstract:
In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.Keywords: Attemperator, Evolutionary algorithms, Fossil fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17922745 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6552744 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8582743 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost
Authors: Yuan-Jye Tseng, Jia-Shu Li
Abstract:
To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.
Keywords: Design evaluation, functional design, Kansei design, supply chain, design value, manufacturing cost, fuzzy analytic network process, technique for order preference by similarity to ideal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7942742 A Protocol for Applied Consumer Behavior Research in Academia
Abstract:
A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.
Keywords: Marketing, experiential learning, consumer behavior, community partner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882741 Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: I. Derek Kaka’an, P. Smolianov, D. Koh Choon Lian, S. Dion, C. Schoen, J. Norberg
Abstract:
This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.
Keywords: Football, high performance, mass participation, Nigeria, sport development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11532740 Value-Relevance of Accounting Information:Evidence from Iranian Emerging Stock Exchange
Authors: Ali Faal Ghayoumi, Mahmoud Dehghan Nayeri, Manouchehre Ansari, Taha Raeesi
Abstract:
This study aims to investigate empirically the valuerelevance of accounting information to domestic investors in Tehran stock exchange from 1999 to 2006. During the present research impacts of two factors, including positive vs. negative earnings and the firm size are considered as well. The authors used earnings per share and annual change of earnings per share as the income statement indices, and book value of equity per share as the balance sheet index. Return and Price models through regression analysis are deployed in order to test the research hypothesis. Results depicted that accounting information is value-relevance to domestic investors in Tehran Stock Exchange according to both studied models. However, income statement information has more value-relevance than the balance sheet information. Furthermore, positive vs. negative earnings and firm size seems to have significant impact on valuerelevance of accounting information.Keywords: Value-Relevance of Accounting Information, Iranianstock exchange, Return Model, Price Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25652739 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability
Authors: Pradeep Kumar, Abdul Wahid
Abstract:
Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.
Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18392738 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8972737 Empirical Modeling of Air Dried Rubberwood Drying System
Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit
Abstract:
Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (R²), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (R² = 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.
Keywords: Empirical models, hot air, moisture ratio, rubberwood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7802736 An Improved Design of Area Efficient Two Bit Comparator
Authors: Shashank Gautam, Pramod Sharma
Abstract:
In present era, development of digital circuits, signal processors and other integrated circuits, magnitude comparators are challenged by large area and more power consumption. Comparator is most basic circuit that performs comparison. This paper presents a technique to design a two bit comparator which consumes less area and power. DSCH and MICROWIND version 3 are used to design the schematic and design the layout of the schematic, observe the performance parameters at different nanometer technologies respectively.
Keywords: Chip design, consumed power, layout area, two bit comparator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12182735 A Methodology for Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and cloud computing, we mostly rely on the machine and natural language processing capabilities of AI, and energy efficient hardware and software devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and to sustain the depletion of natural resources. The core pillars of sustainability are Economic, Environmental, and Social, which are also informally referred to as 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core sustainability model in the enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand there is also a growing concern in many industries on how to reduce carbon emission and conserve natural resources while adopting sustainability in the corporate business models and policies. In our paper, we would like to discuss the driving forces such as climate changes, natural disasters, pandemic, disruptive technologies, corporate policies, scaled business models and emerging social media and AI platforms that influence the 3 main pillars of sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increase recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (shared IT services, cloud computing and application modernization) with the vision for a sustainable environment.
Keywords: AI, cloud computing, machine learning, social media platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042734 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides
Authors: V. Keim, J. Spachtholz, J. Hammer
Abstract:
The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.Keywords: Complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13722733 Connected Objects with Optical Rectenna for Wireless Information Systems
Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli
Abstract:
Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.Keywords: Antenna, Rectenna, solar cell, 5G, optical RECTENNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4842732 Cognitive eTransformation Framework for Education Sector
Authors: A. Hol
Abstract:
21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.Keywords: Education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6602731 Sustainable Geographic Information System-Based Map for Suitable Landfill Sites in Aley and Chouf, Lebanon
Authors: Allaw Kamel, Bazzi Hasan
Abstract:
Municipal solid waste (MSW) generation is among the most significant sources which threaten the global environmental health. Solid Waste Management has been an important environmental problem in developing countries because of the difficulties in finding sustainable solutions for solid wastes. Therefore, more efforts are needed to be implemented to overcome this problem. Lebanon has suffered a severe solid waste management problem in 2015, and a new landfill site was proposed to solve the existing problem. The study aims to identify and locate the most suitable area to construct a landfill taking into consideration the sustainable development to overcome the present situation and protect the future demands. Throughout the article, a landfill site selection methodology was discussed using Geographic Information System (GIS) and Multi Criteria Decision Analysis (MCDA). Several environmental, economic and social factors were taken as criterion for selection of a landfill. Soil, geology, and LUC (Land Use and Land Cover) indices with the Sustainable Development Index were main inputs to create the final map of Environmentally Sensitive Area (ESA) for landfill site. Different factors were determined to define each index. Input data of each factor was managed, visualized and analyzed using GIS. GIS was used as an important tool to identify suitable areas for landfill. Spatial Analysis (SA), Analysis and Management GIS tools were implemented to produce input maps capable of identifying suitable areas related to each index. Weight has been assigned to each factor in the same index, and the main weights were assigned to each index used. The combination of the different indices map generates the final output map of ESA. The output map was reclassified into three suitability classes of low, moderate, and high suitability. Results showed different locations suitable for the construction of a landfill. Results also reflected the importance of GIS and MCDA in helping decision makers finding a solution of solid wastes by a sanitary landfill.
Keywords: Sustainable development, landfill, municipal solid waste, geographic information system, GIS, multi criteria decision analysis, environmentally sensitive area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8802730 Molecular Dynamic Simulation and Receptor-based Pharmacophore Modeling on Human Renin for Discovery of Novel Inhibitors
Authors: Chanin Park, Sundarapandian Thangapandian, Yuno Lee, Minky Son, Shalini John, Young-sik Sohn, Keun Woo Lee
Abstract:
Hypertension is characterized with stress on the heart and blood vessels thus increasing the risk of heart attack and renal diseases. The Renin angiotensin system (RAS) plays a major role in blood pressure control. Renin is the enzyme that controls the RAS at the rate-limiting step. Our aim is to develop new drug-like leads which can inhibit renin and thereby emerge as therapeutics for hypertension. To achieve this, molecular dynamics (MD) simulation and receptor-based pharmacophore modeling were implemented, and three rennin-inhibitor complex structures were selected based on IC50 value and scaffolds of inhibitors. Three pharmacophore models were generated considering conformations induced by inhibitor. The compounds mapped to these models were selected and subjected to drug-like screening. The identified hits were docked into the active site of renin. Finally, hit1 satisfying the binding mode and interaction energy was selected as possible lead candidate to be used in novel renin inhibitors.
Keywords: Renin inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19682729 Multi-Faceted Growth in Creative Industries
Authors: Sanja Pfeifer, Nataša Šarlija, Marina Jeger, Ana Bilandžić
Abstract:
The purpose of this study is to explore the different facets of growth among micro, small and medium-sized firms in Croatia and to analyze the differences between models designed for all micro, small and medium-sized firms and those in creative industries. Three growth prediction models were designed and tested using the growth of sales, employment and assets of the company as dependent variables. The key drivers of sales growth are: prudent use of cash, industry affiliation and higher share of intangible assets. Growth of assets depends on retained profits, internal and external sources of financing, as well as industry affiliation. Growth in employment is closely related to sources of financing, in particular, debt and it occurs less frequently than growth in sales and assets. The findings confirm the assumption that growth strategies of small and medium-sized enterprises (SMEs) in creative industries have specific differences in comparison to SMEs in general. Interestingly, only 2.2% of growing enterprises achieve growth in employment, assets and sales simultaneously.
Keywords: Creative industries, growth prediction model, growth determinants, growth measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15792728 A Comparison of Air Pollution in Developed and Developing Cities: A Case Study of London and Beijing
Abstract:
With the rapid development of industrialization, countries in different stages of development in the world have gradually begun to pay attention to the impact of air pollution on health and the environment. Air control in developed countries is an effective reference for air control in developing countries. Artificial intelligence and other technologies also play a positive role in the prediction of air pollution. By comparing the annual changes of pollution in London and Beijing, this paper concludes that the pollution in developed cities is relatively low and stable, while the pollution in Beijing is relatively heavy and unstable, but is clearly improving. In addition, by analyzing the changes of major pollutants in Beijing in the past eight years, it is concluded that all pollutants except O3 show a significant downward trend. In addition, all pollutants except O3 have certain correlation. For example, PM10 and PM2.5 have the greatest influence on air quality index (AQI). Python, which is commonly used by artificial intelligence, is used as the main software to establish two models, support vector machine (SVM) and linear regression. By comparing the two models under the same conditions, it is concluded that SVM has higher accuracy in pollution prediction. The results of this study provide valuable reference for pollution control and prediction in developing countries.
Keywords: Air pollution, particulate matter, AQI, correlation coefficient, air pollution prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5822727 Clinical Decision Support for Disease Classification based on the Tests Association
Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon
Abstract:
Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342726 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation
Authors: Rabia Korkmaz Tan, Şebnem Bora
Abstract:
The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.
Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12442725 Estimation of Buffer Size of Internet Gateway Server via G/M/1 Queuing Model
Authors: Dr. L.K. Singh, Dr. R. M. L, Riktesh Srivastava
Abstract:
How to efficiently assign system resource to route the Client demand by Gateway servers is a tricky predicament. In this paper, we tender an enhanced proposal for autonomous recital of Gateway servers under highly vibrant traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.Keywords: Gateway Server, G/M/1 Queuing Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594