Search results for: wake structures.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1360

Search results for: wake structures.

1240 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay failure of repair mortar, and thus, provide sufficient compatibility. Hence, this work presents a study on suitability of WTRAA-based materials as mortars for repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as alkaline activator, and different gradation of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates promising application of WTRAA mortars in practical repairs of concrete structures.

Keywords: Alkali-activated mortars, concrete repair, mortar compatibility flexural strength, waste tire rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450
1239 Design Development of Floating Performance Structure for Coastal Areas in the Maltese Islands

Authors: Rebecca E. Dalli Gonzi, Joseph Falzon

Abstract:

Background: Islands in the Mediterranean region offer opportunities for various industries to take advantage of the facilitation and use of versatile floating structures in coastal areas. In the context of dense land use, marine structures can contribute to ensure both terrestrial and marine resource sustainability. Objective: The aim of this paper is to present and critically discuss an array of issues that characterize the design process of a floating structure for coastal areas and to present the challenges and opportunities of providing such multifunctional and versatile structures around the Maltese coastline. Research Design: A three-tier research design commenced with a systematic literature review. Semi-structured interviews with stakeholders including a naval architect, a marine engineer and civil designers were conducted. A second stage preceded a focus group with stakeholders in design and construction of marine lightweight structures. The three tier research design ensured triangulation of issues. All phases of the study were governed by research ethics. Findings: Findings were grouped into three main themes: excellence, impact and implementation. These included design considerations, applications and potential impacts on local industry. Literature for the design and construction of marine structures in the Maltese Islands presented multiple gaps in the application of marine structures for local industries. Weather conditions, depth of sea bed and wave actions presented limitations on the design capabilities of the structure. Conclusion: Water structures offer great potential and conclusions demonstrate the applicability of such designs for Maltese waters. There is still no such provision within Maltese coastal areas for multi-purpose use. The introduction of such facilities presents a range of benefits for visiting tourists and locals thereby offering wide range of services to tourism and marine industry. Costs for construction and adverse weather conditions were amongst the main limitations that shaped design capacities of the water structures.

Keywords: Coastal areas, lightweight, marine structure, multipurpose, versatile, floating device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
1238 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
1237 A ±0.5V BiCMOS Class-A Current Conveyor

Authors: Subodh Thankachan, Manisha Pattanaik, S. S. Rajput

Abstract:

In this paper, a new BiCMOS CCII and CCCII, capable of operate at ±0.5V and having wide dynamic range with achieved bandwidth of 480MHz and 430MHz respectively have been proposed. The structures have been found to be insensitive to the threshold voltage variations. The proposed circuits are suitable for implementation using 0.25μm BiCMOS technology. Pspice simulations confirm the performance of the proposed structures.

Keywords: BiCMOS, Current conveyor, Compound current conveyor, Low supply voltage, Threshold voltage variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
1236 Data Structures and Algorithms of Intelligent Web-Based System for Modular Design

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

In recent years, new product development became more and more competitive and globalized, and the designing phase is critical for the product success. The concept of modularity can provide the necessary foundation for organizations to design products that can respond rapidly to market needs. The paper describes data structures and algorithms of intelligent Web-based system for modular design taking into account modules compatibility relationship and given design requirements. The system intelligence is realized by developed algorithms for choice of modules reflecting all system restrictions and requirements. The proposed data structure and algorithms are illustrated by case study of personal computer configuration. The applicability of the proposed approach is tested through a prototype of Web-based system.

Keywords: Data structures, algorithms, intelligent web-based system, modular design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
1235 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1234 Serviceability of Fabric-Formed Concrete Structures

Authors: Yadgar Tayfur, Antony Darby, Tim Ibell, Mark Evernden, John Orr

Abstract:

Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams.

Keywords: Concrete beams, deflections, fabric formwork, optimisation, serviceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
1233 Vehicle Aerodynamics: Drag Reduction by Surface Dimples

Authors: C. K. Chear, S. S. Dol

Abstract:

For a bluff body, dimples behave like roughness elements in stimulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake and lower form drag. This is very different in principle from the application of dimples to streamlined body, where any reduction in drag would be predominantly due to a reduction in skin friction. In the present work, a car model with different dimple geometry is simulated using k-ε turbulence modeling to determine its effect to the aerodynamics performance. Overall, the results show that the application of dimples manages to reduce the drag coefficient of the car model.

Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6334
1232 Assessment of the Energy Balance Method in the Case of Masonry Domes

Authors: M. M. Sadeghi, S. Vahdani

Abstract:

Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.

Keywords: Energy balance method, pushover analysis, time history analysis, masonry dome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
1231 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels

Authors: Xuan Sun, Mingbo Tong

Abstract:

To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.

Keywords: Stiffened, Low-velocity, Impact, Abaqus, Impact Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
1230 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1229 Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures

Authors: Hema Sandhya Jagarlamudi, Mousumi Saha, Pavan Kumar Jagarlamudi

Abstract:

The use of Quantum dots is a promising emerging Technology for implementing digital system at the nano level. It is effecient for attractive features such as faster speed , smaller size and low power consumption than transistor technology. In this paper, various Combinational and sequential logical structures - HALF ADDER, SR Latch and Flip-Flop, D Flip-Flop preceding NAND, NOR, XOR,XNOR are discussed based on QCA design, with comparatively less number of cells and area. By applying these layouts, the hardware requirements for a QCA design can be reduced. These structures are designed and simulated using QCA Designer Tool. By taking full advantage of the unique features of this technology, we are able to create complete circuits on a single layer of QCA. Such Devices are expected to function with ultra low power Consumption and very high speeds.

Keywords: QCA, QCA Designer, Clock, Majority Gate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
1228 Bisymmetric, Persymmetric Matrices and Its Applications in Eigen-decomposition of Adjacency and Laplacian Matrices

Authors: Mahdi Nouri

Abstract:

In this paper we introduce an efficient solution method for the Eigen-decomposition of bisymmetric and per symmetric matrices of symmetric structures. Here we decompose adjacency and Laplacian matrices of symmetric structures to submatrices with low dimension for fast and easy calculation of eigenvalues and eigenvectors. Examples are included to show the efficiency of the method.

Keywords: Graphs theory, Eigensolution, adjacency and Laplacian matrix, Canonical forms, bisymmetric, per symmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
1227 Modeling and Simulation of Practical Metamaterial Structures

Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani

Abstract:

Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.

Keywords: Metamaterials, SRR, HIS, CPW, IDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1226 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
1225 Urban Search and Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures

Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia

Abstract:

Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result there is always a risk that they themselves could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of structural damage that may been countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to better judge and quantify risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk, so that they themselves do not become victims.

Keywords: Damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3120
1224 Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces

Authors: R. C. J. Mphahlele, K. Bolton, H. Kasaini

Abstract:

Empirical force fields and density functional theory (DFT) was used to study the binding energies and structures of methylamine on the surface of activated carbons (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the aminecarboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of -9.227 (kcal/mol) which agreed with PW91 at - 13.17 (kcal/mol), compared to DFF 0 (kcal/mol) and UFF -0.72 (kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.

Keywords: Activated Carbons, Binding energy, DFT, Force fields.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1223 Employee Assessment Systems in the Structures of Corporate Groups

Authors: D. Bąk-Grabowska, K. Grzesik, A. Iwanicka, A. Jagoda

Abstract:

The process of human resources management in the structures of corporate groups demonstrates certain specificity, resulting from the division of decision-making and executive competencies, which occurs within these structures between a parent company and its subsidiaries. The subprocess of employee assessment is considered crucial, since it provides information for the implementation of personnel function. The empirical studies conducted in corporate groups, within which at least one company is located in Poland, confirmed the critical significance of employee assessment systems in the process of human resources management in corporate groups. Parent companies, most often, retain their decision-making authority within the framework of the discussed process and introduce uniform employee assessment and personnel controlling systems to subsidiary companies. However, the instruments for employee assessment applied in corporate groups do not present such specificity.

Keywords: Corporate groups, employee periodical assessment system, holding, human resources management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
1222 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection

Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar

Abstract:

In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.

Keywords: High strength concrete, beam-column connection, FRP, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
1221 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: Bridge, Finite Element, 3D model, Earthquake, Spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1220 Structural Characteristics of HPDSP Concrete on Beam Column Joints

Authors: Sushil Kumar Swar, Sanjay Kumar Sharma, Hari Krishan Sharma, Sushil Kumar

Abstract:

The seriously damaged structures during earthquakes show the need and importance of design of reinforced concrete structures with high ductility. Reinforced concrete beam-column joints have an important function in all structures. Under seismic excitation, the beam column joint region is subjected to horizontal and vertical shear forces whose magnitude is many times higher than the adjacent beam and column. Strength and ductility of structures depends mainly on proper detailing of the reinforcement in beamcolumn joints and the old structures were found ductility deficient. DSP materials are obtained by using high quantities of super plasticizers and high volumes of micro silica. In the case of High Performance Densified Small Particle Concrete (HPDSPC), since concrete is dense even at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. This in turn will improve cracking behaviour, ductility and energy absorption capacity of composites in addition to durability. The fine fibers used in our mix are 0.3mm diameter and 10 mm which can be easily placed with high percentage. These fibers easily transfer stresses and act as a composite concrete unit to take up extremely high loads with high compressive strength. HPDSPC placed in the beam column joints helps in safety of human life due to prolonged failure.

Keywords: High Performance Densified Small Particle Concrete (HPDSPC), Steel Fıber Reinforced Concrete (SFRC), Slurry Infiltrated Concrete (SIFCON), Slurry Infiltrated Mat Concrete (SIMCON).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
1219 Design Optimization Methodology of CMOS Active Mixers for Multi-Standard Receivers

Authors: S. Douss, F. Touati, M. Loulou

Abstract:

A design flow of multi-standard down-conversion CMOS mixers for three modern standards: Global System Mobile, Digital Enhanced Cordless Telephone and Universal Mobile Telecommunication Systems is presented. Three active mixer-s structures are studied. The first is based on the Gilbert cell which gives a tolerable noise figure and linearity with a low conversion gain. The second and third structures use the current bleeding and charge injection techniques in order to increase the conversion gain. An improvement of about 2 dB of the conversion gain is achieved without a considerable degradation of the other characteristics. The models used for noise figure, conversion gain and IIP3 used are studied. This study describes the nature of trade-offs inherent in such structures and gives insights that help in identifying which structure is better for given conditions.

Keywords: Active mixer, Radio-frequency transceiver, Multistandardfront end, Gilbert cell, current bleeding, charge injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
1218 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
1217 Application of a Similarity Measure for Graphs to Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser

Abstract:

Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1216 Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed

Authors: Yiming Jin, Yuanhao Gao

Abstract:

In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative.

Keywords: Vortex-induced vibrations, marine pipeline, seabed, sub-harmonic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1215 Cost Optimization of Concentric Braced Steel Building Structures

Authors: T. Balogh, L. G. Vigh

Abstract:

Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.

Keywords: Dissipative Structures, Genetic Algorithm, Seismic Effects, Structural Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
1214 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code

Authors: Kadda Boumediene, Mohamed Bouzit

Abstract:

The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.

Keywords: Seiun Maru propeller, steady, unsteady, CFD, HSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
1213 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam

Authors: Kalyan Kumar Mandal, Damodar Maity

Abstract:

The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.

Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1212 Study of Base-Isolation Building System

Authors: G. W. Ni, Y. M. Zhang, D. L. Jiang, J. N. Chen, B. Liu

Abstract:

In order to improve the effect of isolation structure, the principles and behaviours of the base-isolation system are studied, and the types and characteristics of the base-isolation are also discussed. Compared to the traditional aseismatic structures, the base isolation structures decrease the seismic response obviously: the total structural aseismatic value decreases to 1/4-1/32 and the seismic shear stress in the upper structure decreases to 1/14-1/23. In the huge seism, the structure can have an obvious aseismatic effect.

Keywords: Base-isolation, earthquake wave, dynamic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
1211 Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions

Authors: J. Menčík, B. Culek, Jr., L. Beran, J. Mareš

Abstract:

Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.

Keywords: Bridges, carbonatation, concrete, diagnostics, fatigue, life prediction, monitoring, railway, simulation, structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013