Search results for: lateral loads. combined loads
1404 Instability of Ties in Compression
Authors: T. Cornelius
Abstract:
Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.
Keywords: Masonry, tie connectors, cavity wall, instability, differential movements, combined bending and compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971403 A Practical Approach for Electricity Load Forecasting
Authors: T. Rashid, T. Kechadi
Abstract:
This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.
Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541402 Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture
Authors: J. H. Zhou, C. S. Cheung, C. W. Leung
Abstract:
The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.
Keywords: Combustion characteristics, diesel engine, emissions, methane/hydrogen mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36931401 Three-dimensional Simulation of Flow Pattern at the Lateral Intake in Straight Path, using Finite-Volume Method
Authors: R.Goudarzizadeh, N.Hedayat, S.H.Mousavi Jahromi
Abstract:
Channel junctions can be analyzed in two ways of division (lateral intake) and combined flows (confluence). The present paper investigates 3D flow pattern at lateral intake using Navier-Stokes equation and κ -ε (RNG) turbulent model. The equations are solved by Finite-Volume Method (FVM) and results are compared with the experimental data of (Barkdoll, B.D., 1997) to test the validity of the findings. Comparison of the results with the experimental data indicated a close proximity between the two sets of data which suggest a very close simulation. Results further indicated an inverse relation between the effects of discharge ratio ( r Q ) on the length and width of the separation zone. In other words, as the discharge ration increases, the length and width of separation zone decreases.Keywords: 900 junction, flow division, turbulent flow, numerical modeling, flow separation zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161400 Rehabilitation of Reinforced Concrete Columns
Authors: Madi Rafik, Guenfoud Mohamed
Abstract:
In recent years, rehabilitation has been the subject of extensive research due to increased spending on building work and repair of built works. In all cases, it is absolutely essential to carry out methods of strengthening or repair of structural elements, and that following an inspection analysis and methodology of a correct diagnosis. The reinforced concrete columns are important elements in building structures. They support the vertical loads and provide bracing against the horizontal loads. This research about the behavior of reinforced concrete rectangular columns, rehabilitated by concrete liner, confinement FRP fabric, steel liner or cage formed by metal corners. It allows comparing the contributions of different processes used perspective section resistance elements rehabilitated compared to that is not reinforced or repaired. The different results obtained revealed a considerable gain in bearing capacity failure of reinforced sections cladding concrete, metal bracket, steel plates and a slight improvement to the section reinforced with fabric FRP. The use of FRP does not affect the weight of the structures, but the use of different techniques cladding increases the weight of elements rehabilitated and therefore the weight of the building which requires resizing foundations.
Keywords: cladding, Rehabilitation, reinforced concrete columns, confinement, composite materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36861399 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.
Keywords: Elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8201398 Network Reconfiguration for Load Balancing in Distribution System with Distributed Generation and Capacitor Placement
Authors: T. Lantharthong, N. Rugthaicharoencheep
Abstract:
This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. A method based on Tabu search algorithm, The Tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system with distributed generations and capacitors placement. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.Keywords: Network reconfiguration, Distributed generation Capacitor placement, Load balancing, Optimization technique
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42201397 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load
Authors: Amin Lotfi Eghlim, Mehran pourgholi
Abstract:
Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601396 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm
Authors: R. Srinivasa Rao
Abstract:
Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21681395 Mathematical Determination of Tall Square Building Height under Peak Wind Loads
Authors: Debojyoti Mitra
Abstract:
The present study concentrates on solving the along wind oscillation problem of a tall square building from first principles and across wind oscillation problem of the same from empirical relations obtained by experiments. The criterion for human comfort at the worst condition at the top floor of the building is being considered and a limiting value of height of a building for a given cross section is predicted. Numerical integrations are carried out as and when required. The results show severeness of across wind oscillations in comparison to along wind oscillation. The comfort criterion is combined with across wind oscillation results to determine the maximum allowable height of a building for a given square cross-section.
Keywords: Tall Building, Along-wind Response, Across-wind Response, Human Comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14781394 Effect of Cooled EGR in Combustion Characteristics of a Direct Injection CI Engine Fuelled with Biodiesel Blend
Authors: Sankar Chandrasekar, Rana Niranchan V.S., Joseph Sidharth Leon
Abstract:
As the demand and prices of various petroleum products have been on the rise in recent years, there is a growing need for alternative fuels. Biodiesel, which consists of alkyl monoesters of fatty acids from vegetable oils and animal fats, is considered as an alternative to petroleum diesel. Biodiesel has comparable performance with that of diesel and has lower brake specific fuel consumption than diesel with significant reduction in emissions of CO, hydrocarbons (HC) and smoke with however, a slight increase in NOx emissions. This paper analyzes the effect of cooled exhaust gas recirculation in the combustion characteristics of a direct injection compression ignition engine using biodiesel blended fuel as opposed to the conventional system. The combustion parameters such as cylinder pressure, heat release rate, delay period and peak pressure were analyzed at various loads. The maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend the maximum rate of pressure rise was found to be higher for diesel at higher engine loads.
Keywords: Cylinder pressure, delay period, EGR, heat release.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17321393 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.
Keywords: Sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11081392 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: Image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10451391 Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios
Authors: May Thant Zin, Josephine Borja, Hirofumi Hinode, Winarto Kurniawan
Abstract:
Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nanoparticles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000Ao (or 100nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm.
Keywords: Bimetallic Fe/Cu nanoparticles, Loading ratio, Synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55381390 Simulating Voltage Sag Using PSCAD Software
Authors: Kang Chia Yang, Hushairi HJ Zen, Nur Ikhmar@Najemeen Binti Ayob
Abstract:
Power quality is used to describe the degree of consistency of electrical energy expected from generation source to point of use. The term power quality refers to a wide variety of electromagnetic phenomena that characterize the voltage and current at a given time and at a given location on the power system. Power quality problems can be defined as problem that results in failure of customer equipments, which manifests itself as an economic burden to users, or produces negative impacts on the environment. Voltage stability, power factor, harmonics pollution, reactive power and load unbalance are some of the factors that affect the consistency or the quality level. This research proposal proposes to investigate and analyze the causes and effects of power quality to homes and industries in Sarawak. The increasing application of electronics equipment used in the industries and homes has caused a big impact on the power quality. Many electrical devices are now interconnected to the power network and it can be observed that if the power quality of the network is good, then any loads connected to it will run smoothly and efficiently. On the other hand, if the power quality of the network is bad, then loads connected to it will fail or may cause damage to the equipments and reduced its lifetime. The outcome of this research will enable better and novel solutions of poor power quality to small industries and reduce damage of electrical devices and products in the industries.
Keywords: Power quality, power network, voltage dip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43471389 Engine Power Effects on Support Interference
Authors: B.J.C. Horsten, L.L.M. Veldhuis
Abstract:
Renewed interest in propeller propulsion on aircraft configurations combined with higher propeller loads lead to the question how the effects of the propulsion on model support disturbances should be accounted for. In this paper, the determination of engine power effects on support interference of sting-mounted models is demonstrated by a measurement on a four-engine turboprop aircraft. CFD results on a more generic model are presented in order to clarify the possible mechanism behind engine power effects on support interference. The engine slipstream induces a local change in angle of sideslip at the model sting thereby influencing the sting near-field and far-field effects. Whether or not the net result of these changes in the disturbance pattern leads to a significant engine power effect depends on the configuration of the wind tunnel model and the test setup.Keywords: CFD, engine power effects, measurements, support interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811388 Sedimentation and its Challenges for Operation and Maintenance of Hydraulic Structures using SHARC Software- A Case Study of Eastern Intake in Dez Diversion Dam in Iran
Authors: M.R. Mansoujian, N. Hedayat, M. Mashal, H, Kiamanesh
Abstract:
Analytical investigation of the sedimentation processes in the river engineering and hydraulic structures is of vital importance as this can affect water supply for the cultivating lands in the command area. The reason being that gradual sediment formation behind the reservoir can reduce the nominal capacity of these dams. The aim of the present paper is to analytically investigate sedimentation process along the river course and behind the storage reservoirs in general and the Eastern Intake of the Dez Diversion weir in particular using the SHARC software. Results of the model indicated the water level at 115.97m whereas the real time measurement from the river cross section was 115.98 m which suggests a significantly close relation between them. The average transported sediment load in the river was measured at 0.25mm , from which it can be concluded that nearly 100% of the suspended loads in river are moving which suggests no sediment settling but indicates that almost all sediment loads enters into the intake. It was further showed the average sediment diameter entering the intake to be 0.293 mm which in turn suggests that about 85% of suspended sediments in the river entre the intake. Comparison of the results from the SHARC model with those obtained form the SSIIM software suggests quite similar outputs but distinguishing the SHARC model as more appropriate for the analysis of simpler problems than other model.Keywords: SHARC, Eastern Intake, Dez Diversion Weir.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961387 Laboratory Evaluation of Bacillus subtilis Bioactivity on Musca domestica (Linn) (Diptera: Muscidae) Larvae from Poultry Farms in South Western Nigeria
Authors: Funmilola O. Omoya
Abstract:
Muscid flies are known to be vectors of disease agents and species that annoy humans and domesticated animals. An example of these flies is Musca domestica (house fly) whose adult and immature stages occur in a variety of filthy organic substances including household garbage and animal manures. They contribute to microbial contamination of foods. It is therefore imperative to control these flies as a result of their role in Public health. The second and third instars of Musca domestica (Linn) were infected with varying cell loads of Bacillus subtilis in vitro for a period of 48 hours to evaluate its larvicidal activities. Mortality of the larvae increased with incubation period after treatment with the varying cell loads. Investigation revealed that the second instars larvae were more susceptible to treatment than the third instars treatments. Values obtained from the third instar group were significantly different (P<0.05) from those obtained from the second instars group in all the treatments. Lethal concentration (LC50) at 24 hours for 2nd instars was 2.35 while LC50 at 48 hours was 4.31.This study revealed that Bacillus subtilis possess good larvicidal potential for use in the control of Musca domestica in poultry farms.
Keywords: Bacillus subtilis, larvicidal activities, Musca domestica, poultry farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22381386 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs
Authors: Andrej Golowin, Viktor Denk, Axel Riepe
Abstract:
Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.Keywords: Damage tolerance, Monte-Carlo method, fan blade and disc, laser shock peening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771385 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads
Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh
Abstract:
Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.
Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9741384 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences
Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato
Abstract:
In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15431383 A Commercial Building Plug Load Management System That Uses Internet of Things Technology to Automatically Identify Plugged-In Devices and Their Locations
Authors: Amy LeBar, Kim L. Trenbath, Bennett Doherty, William Livingood
Abstract:
Plug and process loads (PPLs) account for a large portion of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering, and data storage. A laboratory proof of concept (PoC) demonstrated all but the energy metering capability, and these capabilities were validated using a series of system tests. The PoC was able to identify when a device was plugged into an outlet and the location of the device in the building. When a device was moved, the PoC’s dashboard and database were automatically updated with the new location. The PoC implemented controls to devices from the system dashboard so that devices maintained correct schedules regardless of where they were plugged in within the building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. An ATLIS-based system could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.
Keywords: commercial buildings, grid-interactive efficient buildings, miscellaneous electric loads, plug loads, plug load management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8781382 GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia
Authors: M. Eisakhani, A. Pauzi, O. Karim, A. Malakahmad, S.R. Mohamed Kutty, M. H. Isa
Abstract:
Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.Keywords: Cameron Highlands, Land use, Non-point Sources of Pollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28761381 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach
Authors: Bernard Kumi-Boateng, Issaka Yakubu
Abstract:
Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.
Keywords: Forest risk, GIS, remote sensing, Goaso.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20021380 Seismic Evaluation with Shear Walls and Braces for Buildings
Authors: S. K. Madan, R. S. Malik, V. K. Sehgal
Abstract:
R.C.C. buildings with dual structural system consisting of shear walls (or braces) and moment resisting frames have been widely used to resist lateral forces during earthquakes. The dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of combination of braces and shear walls has not yet been studied. The combination may prove to be more effective to resist lateral forces during earthquakes. This concept has been applied to regular R.C.C. buildings provided with shear walls, braces and their combinations.
Keywords: Dynamic analysis, Displacement, Dual structural system, Storey drift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41181379 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet
Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia
Abstract:
Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical generic sync middleware of low maintenance and operation costs is most wanted. To this demand, this paper presented a generic sync middleware system (GSMS), which has been developed, applied and optimized since 2006, holding the principles or advantages that it must be SyncML-compliant and transparent to data application layer logic without referring to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence of low cost. Regarding these hard commitments of developing GSMS, in this paper we stressed the significant optimization breakthrough of GSMS sync delay being well below a fraction of millisecond per record sync. A series of ultimate tests with GSMS sync performance were conducted for a persuasive example, in which the source relational database underwent a broad range of write loads (from one thousand to one million intensive writes within a few minutes). All these tests showed that the performance of GSMS is competent and smooth even under ultimate write loads.
Keywords: Heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551378 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
Authors: S. Chandrasekaran, P. A. Kiran
Abstract:
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.Keywords: Offshore platforms, stability, postulated failure, dynamic tether tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9011377 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other
Abstract:
Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.
Keywords: Tunnel, Soil cementation, Static, Dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241376 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams
Authors: H. Ozbasaran
Abstract:
Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25671375 Finite Element Modelling of Log Wall Corner Joints
Authors: R. Kalantari, G. Hafeez
Abstract:
The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.
Keywords: dovetail joint, finite element modelling, log shear walls, standard joint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498