Search results for: gaussian function
2245 The Study of the Discrete Risk Model with Random Income
Authors: Peichen Zhao
Abstract:
In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted penalty function is then given. Finally, we give two examples of ruin quantities to illustrate applications of the recursive formula and the asymptotic estimate for penalty function.
Keywords: Discounted penalty function, compound binomial process, recursive formula, discrete renewal equation, asymptotic estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14232244 Clustering Unstructured Text Documents Using Fading Function
Authors: Pallav Roxy, Durga Toshniwal
Abstract:
Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19852243 A Dual Fitness Function Genetic Algorithm: Application on Deterministic Identical Machine Scheduling
Authors: Saleem Z. Ramadan, Gürsel A. Süer
Abstract:
In this paper a genetic algorithm (GA) with dual-fitness function is proposed and applied to solve the deterministic identical machine scheduling problem. The mating fitness function value was used to determine the mating for chromosomes, while the selection fitness function value was used to determine their survivals. The performance of this algorithm was tested on deterministic identical machine scheduling using simulated data. The results obtained from the proposed GA were compared with classical GA and integer programming (IP). Results showed that dual-fitness function GA outperformed the classical single-fitness function GA with statistical significance for large problems and was competitive to IP, particularly when large size problems were used.
Keywords: Machine scheduling, Genetic algorithms, Due dates, Number of tardy jobs, Number of early jobs, Integer programming, Dual Fitness functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20682242 Function of miR-125b in Zebrafish Neurogenesis
Authors: Minh T. N. Le, Cathleen Teh, Ng Shyh-Chang, Vladimir Korzh, Harvey F. Lodish, Bing Lim
Abstract:
MicroRNAs are an important class of gene expression regulators that are involved in many biological processes including embryogenesis. miR-125b is a conserved microRNA that is enriched in the nervous system. We have previously reported the function of miR-125b in neuronal differentiation of human cell lines. We also discovered the function of miR-125b in regulating p53 in human and zebrafish. Here we further characterize the brain defects in zebrafish embryos injected with morpholinos against miR-125b. Our data confirm the essential role of miR-125b in brain morphogenesis particularly in maintaining the balance between proliferation, cell death and differentiation. We identified lunatic fringe (lfng) as an additional target of miR-125b in human and zebrafish and suggest that lfng may mediate the function of miR-125b in neurogenesis. Together, this report reveals new insights into the function of miR- 125b during neural development of zebrafish.Keywords: microRNA, miR-125b, neurogenesis, zebrafish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18692241 A Practical and Efficient Evaluation Function for 3D Model Based Vehicle Matching
Authors: Yuan Zheng
Abstract:
3D model-based vehicle matching provides a new way for vehicle recognition, localization and tracking. Its key is to construct an evaluation function, also called fitness function, to measure the degree of vehicle matching. The existing fitness functions often poorly perform when the clutter and occlusion exist in traffic scenarios. In this paper, we present a practical and efficient fitness function. Unlike the existing evaluation functions, the proposed fitness function is to study the vehicle matching problem from both local and global perspectives, which exploits the pixel gradient information as well as the silhouette information. In view of the discrepancy between 3D vehicle model and real vehicle, a weighting strategy is introduced to differently treat the fitting of the model’s wireframes. Additionally, a normalization operation for the model’s projection is performed to improve the accuracy of the matching. Experimental results on real traffic videos reveal that the proposed fitness function is efficient and robust to the cluttered background and partial occlusion.Keywords: 3D-2D matching, fitness function, 3D vehicle model, local image gradient, silhouette information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342240 Tracking Objects in Color Image Sequences: Application to Football Images
Authors: Mourad Moussa, Ali Douik, Hassani Messaoud
Abstract:
In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.
Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19852239 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9312238 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.
Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8642237 Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure
Authors: Tokuei Sako, Paul-Antoine Hervieux
Abstract:
The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions.
Keywords: Confined systems, positron, wave function, Wigner molecule, quantum dots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18532236 Defuzzification of Periodic Membership Function on Circular Coordinates
Authors: Takashi Mitsuishi, Koji Saigusa
Abstract:
This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. Proposed methods in this paper remove complicatedness concerning domain of periodic membership function from defuzzification in fuzzy approximate reasoning. Defuzzification on circular polar coordinates is also proposed.
Keywords: Defuzzification, periodic membership function, polar coordinates transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20802235 Simulation of PM10 Source Apportionment at An Urban Site in Southern Taiwan by a Gaussian Trajectory Model
Authors: Chien-Lung Chen, Jeng-Lin Tsai, Feng-Chao Chung, Su-Ching Kuo, Kuo-Hsin Tseng, Pei-Hsuan Kuo, Li-Ying Hsieh, Ying I. Tsai
Abstract:
This study applied the Gaussian trajectory transfer-coefficient model (GTx) to simulate the particulate matter concentrations and the source apportionments at Nanzih Air Quality Monitoring Station in southern Taiwan from November 2007 to February 2008. The correlation coefficient between the observed and the calculated daily PM10 concentrations is 0.5 and the absolute bias of the PM10 concentrations is 24%. The simulated PM10 concentrations matched well with the observed data. Although the emission rate of PM10 was dominated by area sources (58%), the results of source apportionments indicated that the primary sources for PM10 at Nanzih Station were point sources (42%), area sources (20%) and then upwind boundary concentration (14%). The obvious difference of PM10 source apportionment between episode and non-episode days was upwind boundary concentrations which contributed to 20% and 11% PM10 sources, respectively. The gas-particle conversion of secondary aerosol and long range transport played crucial roles on the PM10 contribution to a receptor.Keywords: back trajectory model, particulate matter, sourceapportionment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15982234 Management of Air Pollutants from Point Sources
Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde
Abstract:
Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.
Keywords: DBMS, NO2, SO2, Wind rose plots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20332233 Mobile Robot Path Planning Utilizing Probability Recursive Function
Authors: Ethar H. Khalil, Bahaa I. Kazem
Abstract:
In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.Keywords: Mobile robot, path planning, Bezier curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632232 Peakwise Smoothing of Data Models using Wavelets
Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan
Abstract:
Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502231 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain
Authors: Suman Senapati, Goutam Saha
Abstract:
Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16512230 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.
Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192229 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation
Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko
Abstract:
In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.Keywords: Deinterlacing, polynomial interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13832228 Medical Image Segmentation Using Deformable Models and Local Fitting Binary
Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki
Abstract:
This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162227 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type
Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long
Abstract:
This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.
Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16562226 Signature Identification Scheme Based on Iterated Function Systems
Authors: Nadia M. G. AL-Saidi
Abstract:
Since 1984 many schemes have been proposed for digital signature protocol, among them those that based on discrete log and factorizations. However a new identification scheme based on iterated function (IFS) systems are proposed and proved to be more efficient. In this study the proposed identification scheme is transformed into a digital signature scheme by using a one way hash function. It is a generalization of the GQ signature schemes. The attractor of the IFS is used to obtain public key from a private one, and in the encryption and decryption of a hash function. Our aim is to provide techniques and tools which may be useful towards developing cryptographic protocols. Comparisons between the proposed scheme and fractal digital signature scheme based on RSA setting, as well as, with the conventional Guillou-Quisquater signature, and RSA signature schemes is performed to prove that, the proposed scheme is efficient and with high performance.Keywords: Digital signature, Fractal, Iterated function systems(IFS), Guillou-Quisquater (GQ) protocol, Zero-knowledge (ZK)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142225 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations
Authors: Ehsan Mahdavi
Abstract:
In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.
Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20592224 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals
Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing
Abstract:
Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022223 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.
Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11842222 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study
Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed
Abstract:
This paper compares the substructure and direct approaches for soil-structure interaction (SSI) analysis in the time domain. In the substructure approach, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the coupled soil-structure system. To explore the potential limitations of the substructure modeling process, a two-dimensional (2D) reinforced concrete frame structure is modeled and analyzed using the direct and substructure approaches. The results show discrepancy between the simulated responses of the direct and substructure models. It is concluded that the main source of discrepancy is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall alternatively be developed. This refined impedance function is expected to improve the simulation accuracy of the substructure approach.
Keywords: Direct approach, impedance function, massless rigid foundation, soil-structure interaction, substructure approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4682221 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23992220 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14952219 Certain Conditions for Strongly Starlike and Strongly Convex Functions
Authors: Sukhwinder Singh Billing, Sushma Gupta, Sukhjit Singh Dhaliwal
Abstract:
In the present paper, we investigate a differential subordination involving multiplier transformation related to a sector in the open unit disk E = {z : |z| < 1}. As special cases to our main result, certain sufficient conditions for strongly starlike and strongly convex functions are obtained.Keywords: Analytic function, Multiplier transformation, Strongly starlike function, Strongly convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11782218 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals
Authors: Othman Belgassim, Krzysztof Jemielniak
Abstract:
The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.Keywords: AE signal, skew, kurtosis, tool failure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18472217 Application of Computational Methods Mm2 and Gussian for Studing Unimolecular Decomposition of Vinil Ethers based on the Mechanism of Hydrogen Bonding
Authors: Behnaz Shahrokh, Garnik N. Sargsyan, Arkadi B. Harutyunyan
Abstract:
Investigations of the unimolecular decomposition of vinyl ethyl ether (VEE), vinyl propyl ether (VPE) and vinyl butyl ether (VBE) have shown that activation of the molecule of a ether results in formation of a cyclic construction - the transition state (TS), which may lead to the displacement of the thermodynamic equilibrium towards the reaction products. The TS is obtained by applying energy minimization relative to the ground state of an ether under the program MM2 when taking into account the hydrogen bond formation between a hydrogen atom of alkyl residue and the extreme atom of carbon of the vinyl group. The dissociation of TS up to the products is studied by energy minimization procedure using the mathematical program Gaussian. The obtained calculation data for VEE testify that the decomposition of this ether may be conditioned by hydrogen bond formation for two possible versions: when α- or β- hydrogen atoms of the ethyl group are bound to carbon atom of the vinyl group. Applying the same calculation methods to other ethers (VPE and VBE) it is shown that only in the case of hydrogen bonding between α-hydrogen atom of the alkyl residue and the extreme atom of carbon of the vinyl group (αH---C) results in decay of theses ethers.Keywords: Gaussian, MM2, ethers, TS, decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12212216 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran
Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh
Abstract:
The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287