Search results for: fuzzy addition operation
4123 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process
Authors: C. Ardil
Abstract:
The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.
Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6014122 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System
Authors: A. El Ougli, I. Lagrat, I. Boumhidi
Abstract:
In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18284121 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation
Authors: N. Parandin, M. A. Fariborzi Araghi
Abstract:
in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14064120 On Some Subspaces of Entire Sequence Space of Fuzzy Numbers
Authors: T. Balasubramanian, A. Pandiarani
Abstract:
In this paper we introduce some subspaces of fuzzy entire sequence space. Some general properties of these sequence spaces are discussed. Also some inclusion relation involving the spaces are obtained. Mathematics Subject Classification: 40A05, 40D25.
Keywords: Fuzzy Numbers, Entire sequences, completeness, Fuzzy entire sequences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12404119 Multi-Objective Fuzzy Model in Optimal Sitingand Sizing of DG for Loss Reduction
Authors: H. Shayeghi, B. Mohamadi
Abstract:
This paper presents a possibilistic (fuzzy) model in optimal siting and sizing of Distributed Generation (DG) for loss reduction and improve voltage profile in power distribution system. Multi-objective problem is developed in two phases. In the first one, the set of non-dominated planning solutions is obtained (with respect to the objective functions of fuzzy economic cost, and exposure) using genetic algorithm. In the second phase, one solution of the set of non-dominated solutions is selected as optimal solution, using a suitable max-min approach. This method can be determined operation-mode (PV or PQ) of DG. Because of considering load uncertainty in this paper, it can be obtained realistic results. The whole process of this method has been implemented in the MATLAB7 environment with technical and economic consideration for loss reduction and voltage profile improvement. Through numerical example the validity of the proposed method is verified.
Keywords: Fuzzy Power Flow, DG siting and sizing, LoadUncertainty, Multi-objective Possibilistic Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16274118 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums
Authors: I. Zamani, M. H. Zarif
Abstract:
In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.
Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25134117 A New Reliability Allocation Method Based On Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.
Keywords: Reliability allocation, fuzzy arithmetic, allocation weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33294116 Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method
Authors: C. Ardil
Abstract:
Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), Picture fuzzy sets (PFS), q-rung orthopair fuzzy sets (q-ROF), Spherical fuzzy sets (SFS), T-spherical FS, and Neutrosophic sets (NS) are reviewed as multidimensional extensions of fuzzy sets in order to more explicitly and informatively describe the opinions of decision-making experts under uncertainty. To handle operations with standard fuzzy sets (SFS), the necessary operators; weighted arithmetic mean (WAM), weighted geometric mean (WGM), and Minkowski distance function are defined. The algorithm of the proposed proximity measure method (PMM) is provided with a multiple criteria group decision making method (MCDM) for use in a standard fuzzy set environment. To demonstrate the feasibility of the proposed method, the problem of selecting the best drone for an Air Force procurement request is used. The proximity measure method (PMM) based multidimensional standard fuzzy sets (SFS) is introduced to demonstrate its use with an issue involving unmanned combat aircraft selection.
Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), proximity measure method (PMM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594115 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23734114 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement
Authors: V. K. Banga, R. Kumar, Y. Singh
Abstract:
In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22924113 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models
Authors: Ε. Giovanis
Abstract:
In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16294112 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27164111 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: SPC, MSA, gauge capability, Cg, Cgk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51764110 Numerical Solving of General Fuzzy Linear Systems by Huang's Method
Authors: S. J. Hosseini Ghoncheh, M. Paripour
Abstract:
In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.
Keywords: Fuzzy number, fuzzy linear systems, Huang's method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12904109 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14424108 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification
Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka
Abstract:
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.
Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31814107 On Q-Fuzzy Ideals in Γ-Semigroups
Authors: Samit Kumar Majumder
Abstract:
In this paper the concept of Q-fuzzification of ideals of Γ-semigroups has been introduced and some important properties have been investigated. A characterization of regular Γ-semigroup in terms of Q-fuzzy ideals has been obtained. Operator semigroups of a Γ-semigroup has been made to work by obtaining various relationships between Q-fuzzy ideals of a Γ-semigroup and that of its operator semigroups.
Keywords: Q-Fuzzy set, Γ-semigroup, Regular Γ-semigroup, Q-Fuzzy left(right) ideal, Operator semigroups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28624106 A New Condition for Conflicting Bifuzzy Sets Based On Intuitionistic Evaluation
Authors: Imran C.T., Syibrah M.N., Mohd Lazim A.
Abstract:
Fuzzy sets theory affirmed that the linguistic value for every contraries relation is complementary. It was stressed in the intuitionistic fuzzy sets (IFS) that the conditions for contraries relations, which are the fuzzy values, cannot be greater than one. However, complementary in two contradict phenomena are not always true. This paper proposes a new idea condition for conflicting bifuzzy sets by relaxing the condition of intuitionistic fuzzy sets. Here, we will critically forward examples using triangular fuzzy number in formulating a new condition for conflicting bifuzzy sets (CBFS). Evaluation of positive and negative in conflicting phenomena were calculated concurrently by relaxing the condition in IFS. The hypothetical illustration showed the applicability of the new condition in CBFS for solving non-complement contraries intuitionistic evaluation. This approach can be applied to any decision making where conflicting is very much exist.Keywords: Conflicting bifuzzy set, conflicting degree, fuzzy sets, fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16784105 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application
Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta
Abstract:
The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14624104 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process.
Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3914103 The Intuitionistic Fuzzy Ordered Weighted Averaging-Weighted Average Operator and its Application in Financial Decision Making
Authors: Shouzhen Zeng
Abstract:
We present a new intuitionistic fuzzy aggregation operator called the intuitionistic fuzzy ordered weighted averaging-weighted average (IFOWAWA) operator. The main advantage of the IFOWAWA operator is that it unifies the OWA operator with the WA in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to deal with an uncertain environment that can be assessed with intuitionistic fuzzy numbers. We study some of its main properties and we see that it has a lot of particular cases such as the intuitionistic fuzzy weighted average (IFWA) and the intuitionistic fuzzy OWA (IFOWA) operator. Finally, we study the applicability of the new approach on a financial decision making problem concerning the selection of financial strategies.Keywords: Intuitionistic fuzzy numbers, Weighted average, OWA operator, Financial decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24364102 Novel and Different Definitions for Fuzzy Union and Intersection Operations
Authors: Aarthi Chandramohan, M. V. C. Rao
Abstract:
This paper presents three new methodologies for the basic operations, which aim at finding new ways of computing union (maximum) and intersection (minimum) membership values by taking into effect the entire membership values in a fuzzy set. The new methodologies are conceptually simple and easy from the application point of view and are illustrated with a variety of problems such as Cartesian product of two fuzzy sets, max –min composition of two fuzzy sets in different product spaces and an application of an inverted pendulum to determine the impact of the new methodologies. The results clearly indicate a difference based on the nature of the fuzzy sets under consideration and hence will be highly useful in quite a few applications where different values have significant impact on the behavior of the system.Keywords: Centroid, fuzzy set operations, intersection, triangular norms , triangular S-norms, union.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15044101 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem
Authors: Mustafa Resa Becan
Abstract:
The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.
Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20094100 Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller
Authors: Nurhani Kasuan, Zakariah Yusuf, Mohd Nasir Taib, Mohd Hezri Fazalul Rahiman, Nazurah Tajuddin, Mohd Azri Abdul Aziz
Abstract:
This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance.Keywords: Fuzzy Logic controller, steam temperature, steam distillation, real time control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28404099 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: Phase locked loop, PLL, notch filter, fuzzy logic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7634098 Application of 0-1 Fuzzy Programming in Optimum Project Selection
Authors: S. Sadi-Nezhad, K. Khalili Damghani, N. Pilevari
Abstract:
In this article, a mathematical programming model for choosing an optimum portfolio of investments is developed. The investments are considered as investment projects. The uncertainties of the real world are associated through fuzzy concepts for coefficients of the proposed model (i. e. initial investment costs, profits, resource requirement, and total available budget). Model has been coded by using LINGO 11.0 solver. The results of a full analysis of optimistic and pessimistic derivative models are promising for selecting an optimum portfolio of projects in presence of uncertainty.Keywords: Fuzzy Programming, Fuzzy Knapsack, FuzzyCapital Budgeting, Fuzzy Project Selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17234097 Change Detector Combination in Remotely Sensed Images Using Fuzzy Integral
Authors: H. Nemmour, Y. Chibani
Abstract:
Decision fusion is one of hot research topics in classification area, which aims to achieve the best possible performance for the task at hand. In this paper, we investigate the usefulness of this concept to improve change detection accuracy in remote sensing. Thereby, outputs of two fuzzy change detectors based respectively on simultaneous and comparative analysis of multitemporal data are fused by using fuzzy integral operators. This method fuses the objective evidences produced by the change detectors with respect to fuzzy measures that express the difference of performance between them. The proposed fusion framework is evaluated in comparison with some ordinary fuzzy aggregation operators. Experiments carried out on two SPOT images showed that the fuzzy integral was the best performing. It improves the change detection accuracy while attempting to equalize the accuracy rate in both change and no change classes.Keywords: change detection, decision fusion, fuzzy logic, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16154096 A Comparative Study of P-I, I-P, Fuzzy and Neuro-Fuzzy Controllers for Speed Control of DC Motor Drive
Authors: S.R. Khuntia, K.B. Mohanty, S. Panda, C. Ardil
Abstract:
This paper presents a comparative study of various controllers for the speed control of DC motor. The most commonly used controller for the speed control of dc motor is Proportional- Integral (P-I) controller. However, the P-I controller has some disadvantages such as: the high starting overshoot, sensitivity to controller gains and sluggish response due to sudden disturbance. So, the relatively new Integral-Proportional (I-P) controller is proposed to overcome the disadvantages of the P-I controller. Further, two Fuzzy logic based controllers namely; Fuzzy control and Neuro-fuzzy control are proposed and the performance these controllers are compared with both P-I and I-P controllers. Simulation results are presented and analyzed for all the controllers. It is observed that fuzzy logic based controllers give better responses than the traditional P-I as well as I-P controller for the speed control of dc motor drives.Keywords: Proportional-Integral (P-I) controller, Integral- Proportional (I-P) controller, Fuzzy logic control, Neuro-fuzzy control, Speed control, DC Motor drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12554095 A Novel Fuzzy Technique for Image Noise Reduction
Authors: Hamed Vahdat Nejad, Hameed Reza Pourreza, Hasan Ebrahimi
Abstract:
A new fuzzy filter is presented for noise reduction of images corrupted with additive noise. The filter consists of two stages. In the first stage, all the pixels of image are processed for determining noisy pixels. For this, a fuzzy rule based system associates a degree to each pixel. The degree of a pixel is a real number in the range [0,1], which denotes a probability that the pixel is not considered as a noisy pixel. In the second stage, another fuzzy rule based system is employed. It uses the output of the previous fuzzy system to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Experimental results are obtained to show the feasibility of the proposed filter. These results are also compared to other filters by numerical measure and visual inspection.Keywords: Additive noise, Fuzzy logic, Image processing, Noise reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21104094 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648