Search results for: avenue tree species
767 Visualized Characterization of Molecular Mobility for Water Species in Foods
Authors: Yasuyuki Konishi, Masayoshi Kobayashi
Abstract:
Six parameters, the effective diffusivity (De), activation energy of De, pre-exponential factor of De, amount (ASOW) of self-organized water species, and amplitude (α) of the forced oscillation of the molecular mobility (1/tC) derived from the forced cyclic temperature change operation, were characterized by using six typical foods, squid, sardines, scallops, salmon, beef, and pork, as a function of the correlation time (tC) of the water molecule-s proton retained in the foods. Each of the six parameters was clearly divided into the water species A1 and A2 at a specified value of tC =10-8s (=CtC), indicating an anomalous change in the physicochemical nature of the water species at the CtC. The forced oscillation of 1/tC clearly demonstrated a characteristic mode depending on the food shown as a three dimensional map associated with 1/tC, the amount of self-organized water, and tC.Keywords: molecular mobility, self-organization, hysteresis, water species A1 and A2, forced cyclic temperature change operation (FCTCO)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402766 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779765 Optimizing Mobile Agents Migration Based on Decision Tree Learning
Authors: Yasser k. Ali, Hesham N. Elmahdy, Sanaa El Olla Hanfy Ahmed
Abstract:
Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.
Keywords: Agent Migration, Decision Tree learning, ID3 algorithm, Naive Bayes Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990764 Bird Diversity along Boat Touring Routes in Tha Ka Sub-District, Amphawa District, Samut Songkram Province, Thailand
Authors: N. Charoenpokaraj, P. Chitman
Abstract:
This research aims to study species, abundance, status of birds, the similarities and activity characteristics of birds which reap benefits from the research area in boat touring routes in Tha Ka sub-district, Amphawa District, Samut Songkram Province, Thailand. from October 2012 – September 2013. The data was analyzed to find the abundance, and similarity index of the birds. The results from the survey of birds on all three routes found that there are 33 families and 63 species. Route 3 (traditional coconut sugar making kiln – resort) had the most species; 56 species. There were 18 species of commonly found birds with an abundance level of 5, which calculates to 28.57% of all bird species. In August, 46 species are found, being the greatest number of bird species benefiting from this route. As for the status of the birds, there are 51 resident birds, 7 resident and migratory birds, and 5 migratory birds. On Route 2 and Route 3, the similarity index value is equal to 0.881. The birds are classified by their activity characteristics i.e. insectivore, piscivore, granivore, nectrivore and aquatic invertebrate feeder birds. Some birds also use the area for nesting.
Keywords: Bird diversity, boat touring routes, Samut Songkram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715763 A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves
Authors: A. Boveiri Monji, H. Yousefnia, M. Haji Hosseini, S. Zolghadri
Abstract:
A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of Ficus carica tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective.
Keywords: Spectrophotometric determination, Ficus carica tree leaves, synthetic reagents, hafnium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737762 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433761 Species Diversity of Migratory Birds along Boat Touring Routes in Klong Kone Sub-District, Muang District, Samut Songkram Province, Thailand
Authors: P. Chitman, N. Charoenpokaraj
Abstract:
This research aims to study the species, feeding behavior and activity characteristics of birds which reap benefits from the research area in boat touring routes in Klong Kone Sub-district, Muang District, Samut Songkram Province, Thailand from October 2013 – May 2014. The results from the survey of birds on all three routes found that there are 11 families and 22 species. Route 1 (Klong Kone canal) had the most species, 20 species. According to feeding behavior, there were insectivorous, piscivorous and aquatic invertebrate feeder birds. Activity characteristics of birds which reap benefits from the research were finding food, nesting and raise nestlings along boat touring routes.
Keywords: Bird species diversity, boat touring routes, Samut Songkram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622760 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)
Authors: K. Vijayalakshmi, S. Radhakrishnan
Abstract:
In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.
Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447759 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735758 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer
Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser
Abstract:
In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.Keywords: Graph similarity, DNA microarray data, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755757 Statistical Properties and Performance of Ecological Indices Based On Relative Abundances
Authors: Gebriel M. Shamia
Abstract:
The Improved Generalized Diversity Index (IGDI) has been proposed as a tool that can be used to identify areas that have high conservation value and measure the ecological condition of an area. IGDI is based on the species relative abundances. This paper is concerned with particular attention is given to comparisons involving the MacArthur model of species abundances. The properties and performance of various species indices were assessed. Both IGDI and species richness increased with sampling area according to a power function. IGDI were also found to be acceptable ecological indicators of conditions and consistently outperformed coefficient of conservatism indices.Keywords: Statistical ecology, MacArthur model, Functional Diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028756 A Patricia-Tree Approach for Frequent Closed Itemsets
Authors: Moez Ben Hadj Hamida, Yahya SlimaniI
Abstract:
In this paper, we propose an adaptation of the Patricia-Tree for sparse datasets to generate non redundant rule associations. Using this adaptation, we can generate frequent closed itemsets that are more compact than frequent itemsets used in Apriori approach. This adaptation has been experimented on a set of datasets benchmarks.
Keywords: Datamining, Frequent itemsets, Frequent closeditemsets, Sparse datasets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883755 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979754 A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree
Authors: P. Asadee
Abstract:
Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.Keywords: adder, CMOS, counter, Dadda tree, encoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302753 Hybrid Machine Learning Approach for Text Categorization
Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite
Abstract:
Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.
Keywords: Text categorization, decision trees, neural networks, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805752 Inferring Hierarchical Pronunciation Rules from a Phonetic Dictionary
Authors: Erika Pigliapoco, Valerio Freschi, Alessandro Bogliolo
Abstract:
This work presents a new phonetic transcription system based on a tree of hierarchical pronunciation rules expressed as context-specific grapheme-phoneme correspondences. The tree is automatically inferred from a phonetic dictionary by incrementally analyzing deeper context levels, eventually representing a minimum set of exhaustive rules that pronounce without errors all the words in the training dictionary and that can be applied to out-of-vocabulary words. The proposed approach improves upon existing rule-tree-based techniques in that it makes use of graphemes, rather than letters, as elementary orthographic units. A new linear algorithm for the segmentation of a word in graphemes is introduced to enable outof- vocabulary grapheme-based phonetic transcription. Exhaustive rule trees provide a canonical representation of the pronunciation rules of a language that can be used not only to pronounce out-of-vocabulary words, but also to analyze and compare the pronunciation rules inferred from different dictionaries. The proposed approach has been implemented in C and tested on Oxford British English and Basic English. Experimental results show that grapheme-based rule trees represent phonetically sound rules and provide better performance than letter-based rule trees.
Keywords: Automatic phonetic transcription, pronunciation rules, hierarchical tree inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924751 Applying Spanning Tree Graph Theory for Automatic Database Normalization
Authors: Chetneti Srisa-an
Abstract:
In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.
Keywords: Relational Database, Functional Dependency, Automatic Normalization, Primary Key, Spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866750 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.
Keywords: Degree, initial cluster center, k-means, minimum spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552749 A Decision Tree Approach to Estimate Permanent Residents Using Remote Sensing Data in Lebanese Municipalities
Authors: K. Allaw, J. Adjizian Gerard, M. Chehayeb, A. Raad, W. Fahs, A. Badran, A. Fakherdin, H. Madi, N. Badaro Saliba
Abstract:
Population estimation using Geographic Information System (GIS) and remote sensing faces many obstacles such as the determination of permanent residents. A permanent resident is an individual who stays and works during all four seasons in his village. So, all those who move towards other cities or villages are excluded from this category. The aim of this study is to identify the factors affecting the percentage of permanent residents in a village and to determine the attributed weight to each factor. To do so, six factors have been chosen (slope, precipitation, temperature, number of services, time to Central Business District (CBD) and the proximity to conflict zones) and each one of those factors has been evaluated using one of the following data: the contour lines map of 50 m, the precipitation map, four temperature maps and data collected through surveys. The weighting procedure has been done using decision tree method. As a result of this procedure, temperature (50.8%) and percentage of precipitation (46.5%) are the most influencing factors.
Keywords: Remote sensing and GIS, permanent residence, decision tree, Lebanon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010748 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction
Authors: Enas M. F. El Houby, Marwa S. Hassan
Abstract:
Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.
Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899747 Mycoflora of Activated Sludge with MBRs in Berlin, Germany
Authors: Mohamed F. Awad, M. Kraume
Abstract:
Thirty six samples from each (aerobic and anoxic) activated sludge were collected from two wastewater treatment plants with MBRs in Berlin, Germany. The samples were prepared for count and definition of fungal isolates; these isolates were purified by conventional techniques and identified by microscopic examination. Sixty tow species belonging to 28 genera were isolated from activated sludge samples under aerobic conditions (28 genera and 58 species) and anoxic conditions (26 genera and 52 species). The obtained data show that, Aspergillus was found at 94.4% followed by Penicillium 61.1 %, Fusarium (61.1 %), Trichoderma (44.4 %) and Geotrichum candidum (41.6 %) species were the most prevalent in all activated sludge samples. The study confirmed that fungi can thrive in activated sludge and sporulation, but isolated in different numbers depending on the effect of aeration system. Some fungal species in our study are saprophytic, and other a pathogenic to plants and animals.Keywords: Activated sludge, membrane bioreactors, aerobic, anoxic conditions, fungi
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804746 A Tree Based Association Rule Approach for XML Data with Semantic Integration
Authors: D. Sasikala, K. Premalatha
Abstract:
The use of eXtensible Markup Language (XML) in web, business and scientific databases lead to the development of methods, techniques and systems to manage and analyze XML data. Semi-structured documents suffer due to its heterogeneity and dimensionality. XML structure and content mining represent convergence for research in semi-structured data and text mining. As the information available on the internet grows drastically, extracting knowledge from XML documents becomes a harder task. Certainly, documents are often so large that the data set returned as answer to a query may also be very big to convey the required information. To improve the query answering, a Semantic Tree Based Association Rule (STAR) mining method is proposed. This method provides intentional information by considering the structure, content and the semantics of the content. The method is applied on Reuter’s dataset and the results show that the proposed method outperforms well.
Keywords: Semi--structured Document, Tree based Association Rule (TAR), Semantic Association Rule Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351745 Temporal Variation of Shorebirds Population in Two Different Mudflats Areas
Authors: N. Norazlimi, R. Ramli
Abstract:
A study was conducted to determine the diversity and abundance of shorebird species habituating the mudflat area of Jeram Beach and Remis Beach, Selangor, Peninsular Malaysia. Direct observation technique (using binoculars and video camera) was applied to record the presence of bird species in the sampling sites from August 2013 until July 2014. A total of 32 species of shorebird were recorded during both migratory and non-migratory seasons. Of these, eleven species (48%) are migrants, six species (26%) have both migrant and resident populations, four species (17%) are vagrants and two species (9%) are residents. The compositions of the birds differed significantly in all months (χ2 = 84.35, p < 0.001). There is a significant difference in avian abundance between migratory and non-migratory seasons (Mann-Whitney, t = 2.39, p = 0.036). The avian abundance were differed significantly in Jeram and Remis Beaches during migratory periods (t = 4.39, p = 0.001) but not during non-migratory periods (t = 0.78, p = 0.456). Shorebird diversity was also affected by tidal cycle. There is a significance difference between high tide and low tide (Mann-Whitney, t = 78.0, p < 0.005). Frequency of disturbance also affected the shorebird distribution (Mann-Whitney, t = 57.0, p = 0.0134). Therefore, this study concluded that tides and disturbances are two factors that affecting temporal distribution of shorebird in mudflats area.
Keywords: Biodiversity, distribution, migratory birds, direct observation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291744 Diversity of Short-Horned Grasshoppers (Orthoptera: Caelifera) from Forested Region of Kolhapur District, Maharashtra, India of Northern Western Ghats
Authors: Sunil M. Gaikwad, Yogesh J. Koli, Gopal A. Raut, Ganesh P. Bhawane
Abstract:
The present investigation was directed to study the diversity of short-horned grasshoppers from a forested area of Kolhapur district, Maharashtra, India, which is spread along the hilly terrain of the Northern Western Ghats. The collection was made during 2013 to 2015, and identified with the help of a reference collection of ZSI, Kolkata, and recent literature and dry preserved. The study resulted in the enumeration of 40 species of short-horned grasshoppers belonging to four families of suborder: Caelifera. The family Acrididae was dominant (27 species) followed by Tetrigidae (eight species), Pyrgomorphidae (four species) and Chorotypidae (one species). The report of 40 species from the forest habitat of the study region highlights the significance of the Western Ghats. Ecologically, short-horned grasshoppers are integral to food chains, being consumed by a wide variety of animals. The observations of the present investigation may prove useful for conservation of the Diversity in Northern Western Ghats.Keywords: Diversity, Kolhapur, Northern Western Ghats, Short-horned grasshoppers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139743 Experiments on Element and Document Statistics for XML Retrieval
Authors: Mohamed Ben Aouicha, Mohamed Tmar, Mohand Boughanem, Mohamed Abid
Abstract:
This paper presents an information retrieval model on XML documents based on tree matching. Queries and documents are represented by extended trees. An extended tree is built starting from the original tree, with additional weighted virtual links between each node and its indirect descendants allowing to directly reach each descendant. Therefore only one level separates between each node and its indirect descendants. This allows to compare the user query and the document with flexibility and with respect to the structural constraints of the query. The content of each node is very important to decide weither a document element is relevant or not, thus the content should be taken into account in the retrieval process. We separate between the structure-based and the content-based retrieval processes. The content-based score of each node is commonly based on the well-known Tf × Idf criteria. In this paper, we compare between this criteria and another one we call Tf × Ief. The comparison is based on some experiments into a dataset provided by INEX1 to show the effectiveness of our approach on one hand and those of both weighting functions on the other.Keywords: XML retrieval, INEX, Tf × Idf, Tf × Ief
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335742 Effects of Road Disturbance on Plant Biodiversity
Authors: Sheng-Lan Zeng, Ting-Ting Zhang, Yu Gao, Zu-Tao Ouyang, Jia-Kuan Chen, Bo Li, Bin Zhao
Abstract:
Urbanization and related anthropogenic modifications cause extent of habitat fragmentation and directly lead to decline of local biodiversity. Conservation biologists advocate corridor creation as one approach to rescue biodiversity. Here we examine the utility of roads as corridors in preserving plant diversity by investigating roadside vegetation in Yellow River Delta (YRD), China. We examined the spatio-temporal distribution pattern of plant species richness, diversity and composition along roadside. The results suggest that roads, as dispersal conduits, increase occurrence probability of new settlers to a new area, meanwhile, roads accumulate the greater propagule pressure and favourable survival condition during operation phase. As a result, more species, including native and alien plants, non- halophyte and halophyte species, threatened and cosmopolitic species, were found prosperous at roadside. Roadside may be a refuge for more species, and the pattern of vegetation distribution is affected by road age and the distance from road verge.Keywords: Native and alien species, Plant diversity conservation, Road construction, Road disturbance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3538741 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116740 Wood Species Recognition System
Authors: Bremananth R, Nithya B, Saipriya R
Abstract:
The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461739 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898738 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots
Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar
Abstract:
Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.
Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789