Search results for: Vector error correction model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8825

Search results for: Vector error correction model.

8705 Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria

Authors: Chimaobi V. Okolo, Onyinye S. Ugwuanyi, Kenneth A. Okpala

Abstract:

This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.

Keywords: Exchange rate volatility, exchange rate determinants, manufacturing sector, official exchange rate, parallel exchange rate, real effective exchange rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
8704 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory organization, parallel processors, serial code, vector processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
8703 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
8702 Optimization of the Characteristic Straight Line Method by a “Best Estimate“ of Observed, Normal Orthometric Elevation Differences

Authors: Mahmoud M. S. Albattah

Abstract:

In this paper, to optimize the “Characteristic Straight Line Method" which is used in the soil displacement analysis, a “best estimate" of the geodetic leveling observations has been achieved by taking in account the concept of 'Height systems'. This concept has been discussed in detail and consequently the concept of “height". In landslides dynamic analysis, the soil is considered as a mosaic of rigid blocks. The soil displacement has been monitored and analyzed by using the “Characteristic Straight Line Method". Its characteristic components have been defined constructed from a “best estimate" of the topometric observations. In the measurement of elevation differences, we have used the most modern leveling equipment available. Observational procedures have also been designed to provide the most effective method to acquire data. In addition systematic errors which cannot be sufficiently controlled by instrumentation or observational techniques are minimized by applying appropriate corrections to the observed data: the level collimation correction minimizes the error caused by nonhorizontality of the leveling instrument's line of sight for unequal sight lengths, the refraction correction is modeled to minimize the refraction error caused by temperature (density) variation of air strata, the rod temperature correction accounts for variation in the length of the leveling rod' s Invar/LO-VAR® strip which results from temperature changes, the rod scale correction ensures a uniform scale which conforms to the international length standard and the introduction of the concept of the 'Height systems' where all types of height (orthometric, dynamic, normal, gravity correction, and equipotential surface) have been investigated. The “Characteristic Straight Line Method" is slightly more convenient than the “Characteristic Circle Method". It permits to evaluate a displacement of very small magnitude even when the displacement is of an infinitesimal quantity. The inclination of the landslide is given by the inverse of the distance reference point O to the “Characteristic Straight Line". Its direction is given by the bearing of the normal directed from point O to the Characteristic Straight Line (Fig..6). A “best estimate" of the topometric observations was used to measure the elevation of points carefully selected, before and after the deformation. Gross errors have been eliminated by statistical analyses and by comparing the heights within local neighborhoods. The results of a test using an area where very interesting land surface deformation occurs are reported. Monitoring with different options and qualitative comparison of results based on a sufficient number of check points are presented.

Keywords: Characteristic straight line method, dynamic height, landslides, orthometric height, systematic errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
8701 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
8700 Optimal Synthesis of Multipass Heat Exchanger without Resorting to Correction Factor

Authors: Bharat B. Gulyani, Anuj Jain, Shalendra Kumar

Abstract:

Customarily, the LMTD correction factor, FT, is used to screen alternative designs for a heat exchanger. Designs with unacceptably low FT values are discarded. In this paper, authors have proposed a more fundamental criterion, based on feasibility of a multipass exchanger as the only criteria, followed by economic optimization. This criterion, coupled with asymptotic energy targets, provide the complete optimization space in a heat exchanger network (HEN), where cost-optimization of HEN can be performed with only Heat Recovery Approach temperature (HRAT) and number-of-shells as variables.

Keywords: heat exchanger, heat exchanger networks, LMTD correction factor, shell targeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4324
8699 Feature Vector Fusion for Image Based Human Age Estimation

Authors: D. Karthikeyan, G. Balakrishnan

Abstract:

Human faces, as important visual signals, express a significant amount of nonverbal info for usage in human-to-human communication. Age, specifically, is more significant among these properties. Human age estimation using facial image analysis as an automated method which has numerous potential real‐world applications. In this paper, an automated age estimation framework is presented. Support Vector Regression (SVR) strategy is utilized to investigate age prediction. This paper depicts a feature extraction taking into account Gray Level Co-occurrence Matrix (GLCM), which can be utilized for robust face recognition framework. It applies GLCM operation to remove the face's features images and Active Appearance Models (AAMs) to assess the human age based on image. A fused feature technique and SVR with GA optimization are proposed to lessen the error in age estimation.

Keywords: Support vector regression, feature extraction, gray level co-occurrence matrix, active appearance models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
8698 A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System

Authors: Phruksaphanrat B.

Abstract:

This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.

Keywords: Machine Selection, Preemptive Fuzzy Goal Programming, Mixed Integer Programming, Application of Tire Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
8697 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
8696 Discrete Vector Control for Induction Motor Drives with the Rotor Time Constant Update

Authors: A.Larabi, M.S. Boucherit

Abstract:

In this paper, we investigated vector control of an induction machine taking into account discretization problems of the command. In the purpose to show how to include in a discrete model of this current control and with rotor time constant update. The results of simulation obtained are very satisfaisant. That was possible thanks to the good choice of the values of the parameters of the regulators used which shows, the founded good of the method used, for the choice of the parameters of the discrete regulators. The simulation results are presented at the end of this paper.

Keywords: Induction motor, discrete vector control, PIRegulator, transformation of park, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
8695 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008

Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang

Abstract:

Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.

Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
8694 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution neural network, edges, face recognition, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
8693 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
8692 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing

Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta

Abstract:

Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.

Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
8691 Model Predictive Fuzzy Control of Air-ratio for Automotive Engines

Authors: Hang-cheong Wong, Pak-kin Wong, Chi-man Vong, Zhengchao Xie, Shaojia Huang

Abstract:

Automotive engine air-ratio plays an important role of emissions and fuel consumption reduction while maintains satisfactory engine power among all of the engine control variables. In order to effectively control the air-ratio, this paper presents a model predictive fuzzy control algorithm based on online least-squares support vector machines prediction model and fuzzy logic optimizer. The proposed control algorithm was also implemented on a real car for testing and the results are highly satisfactory. Experimental results show that the proposed control algorithm can regulate the engine air-ratio to the stoichiometric value, 1.0, under external disturbance with less than 5% tolerance.

Keywords: Air-ratio, Fuzzy logic, online least-squares support vector machine, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
8690 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
8689 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie

Abstract:

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
8688 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: Rotary draw bending, material properties, neutral axis shifting, wall thickness distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3917
8687 Economic Factors Affecting Rice Export of Thailand

Authors: Somphoom Sawaengkun

Abstract:

The purpose of this study was primarily assessing how important economic factors namely: The Thai export price of white rice, the exchange rate, and the world rice consumption affect the overall Thai white rice export, using historical data during the period 1989-2013 from the Thai Rice Exporters Association, and Food and Agricultural Organization of the United Nations. The co-integration method, regression analysis, and error correction model were applied to investigate the econometric model. The findings indicated that in the long-run, the world rice consumption, the exchange rate, and the Thai export price of white rice were the important factors affecting the export quantity of Thai white rice respectively, as indicated by their significant coefficients. Meanwhile, the rice export price was an important factor affecting the export quantity of Thai white rice in the short-run. This information is useful in the business, export opportunities, price competitiveness, and policymaker in Thailand.

Keywords: Economic Factors, Rice Export, White Rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3496
8686 Simplified Space Vector Based Decoupled Switching Strategy for Indirect Vector Controlled Open-End Winding Induction Motor Drive

Authors: Syed Munvar Ali, V. Vijaya Kumar Reddy, M. Surya Kalavathi

Abstract:

In this paper, a dual inverter configuration has been implemented for induction motor drive. This isolated dual inverter is capable to produce high quality of output voltage and minimize common mode voltage (CMV). To this isolated dual inverter a decoupled space vector based pulse width modulation (PWM) technique is proposed. Conventional space vector based PWM (SVPWM) techniques require reference voltage vector calculation and sector identification. The proposed decoupled SVPWM technique generates gating pulses from instantaneous phase voltages and gives a CMV of ±vdc/6. To evaluate proposed algorithm MATLAB based simulation studies are carried on indirect vector controlled open end winding induction motor drive.

Keywords: Inverter configuration, decoupled SVPWM, common mode voltage, vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
8685 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation

Authors: Khattab Ibrahim Al Qaisi, Nicholas Bowring

Abstract:

This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.

Keywords: SVPWM, THD, DC-AC Inverter, Sampling Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
8684 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
8683 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
8682 Phase Noise Impact on BER in Space Communication

Authors: Ondrej Baran, Miroslav Kasal, Petr Vagner, Tomas Urbanec

Abstract:

This paper deals with the modeling and the evaluation of a multiplicative phase noise influence on the bit error ratio in a general space communication system. Our research is focused on systems with multi-state phase shift keying modulation techniques and it turns out, that the phase noise significantly affects the bit error rate, especially for higher signal to noise ratios. These results come from a system model created in Matlab environment and are shown in a form of constellation diagrams and bit error rate dependencies. The change of a user data bit rate is also considered and included into simulation results. Obtained outcomes confirm theoretical presumptions.

Keywords: Additive thermal noise, AWGN, BER, bit error rate, multiplicative phase noise, phase shift keying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4612
8681 Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction

Authors: A. Inba Rexy, R. Seyezhai

Abstract:

Through the fast growing technologies, design of power factor correction (PFC) circuit is facing several challenges. In this paper, a two-phase interleaved boost converter with ripple steering technique is proposed. Among the various topologies, Interleaved Boost converter (IBC) is considered as superior due to enriched performance, lower ripple content, compact weight and size. A thorough investigation is presented here for the proposed topology. Simulation study for the IBC has been carried out using MATLAB/SIMULINK. Theoretical analysis and hardware prototype has been performed to validate the results.

Keywords: Interleaved Boost Converter (IBC), Power Factor Correction (PFC), Ripple Steering Technique, Ripple, and Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
8680 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: Wind power, Uncertainty, Stochastic process, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3927
8679 On Finite Wordlength Properties of Block-Floating-Point Arithmetic

Authors: Abhijit Mitra

Abstract:

A special case of floating point data representation is block floating point format where a block of operands are forced to have a joint exponent term. This paper deals with the finite wordlength properties of this data format. The theoretical errors associated with the error model for block floating point quantization process is investigated with the help of error distribution functions. A fast and easy approximation formula for calculating signal-to-noise ratio in quantization to block floating point format is derived. This representation is found to be a useful compromise between fixed point and floating point format due to its acceptable numerical error properties over a wide dynamic range.

Keywords: Block floating point, Roundoff error, Block exponent dis-tribution fuction, Signal factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
8678 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
8677 High Capacity Reversible Watermarking through Interpolated Error Shifting

Authors: Hae-Yeoun Lee

Abstract:

Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error pre-compensation. The intensity of a pixel is interpolated from the intensities of neighboring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error pre-compensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.

Keywords: Reversible watermarking, High capacity, High quality, Interpolated error shifting, Error pre-compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
8676 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541