Search results for: Parameter Selection
1968 A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: Artificial Neural Networks, Holonic Approach, Feature Selection, Bee Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791967 Experimental Evaluation of Mobility Anchor Point Selection Scheme in Hierarchical Mobile IPv6
Authors: Zulkeflee Kusin, Mohamad Shanudin Zakaria
Abstract:
Hierarchical Mobile IPv6 (HMIPv6) was designed to support IP micro-mobility management in the Next Generation Networks (NGN) framework. The main design behind this protocol is the usage of Mobility Anchor Point (MAP) located at any level router of network to support hierarchical mobility management. However, the distance MAP selection in HMIPv6 causes MAP overloaded and increase frequent binding update as the network grows. Therefore, to address the issue in designing MAP selection scheme, we propose a dynamic load control mechanism integrates with a speed detection mechanism (DMS-DLC). From the experimental results we obtain that the proposed scheme gives better distribution in MAP load and increase handover speed.Keywords: Dynamic load control, HMIPv6, Mobility AnchorPoint, MAP selection scheme
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001966 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721965 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411964 Parameters Used in Gateway Selection Schemes for Internet Connected MANETs: A Review
Authors: Zainab S. Mahmood, Aisha H. Abdalla, Wan Haslina Hassan, Farhat Anwar
Abstract:
The wide use of the Internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, handoff, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.
Keywords: Internet Gateway, MANET, Mobility, Selection criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22801963 Ranking of Inventory Policies Using Distance Based Approach Method
Authors: Gupta Amit, Kumar Ramesh, Tewari P. C.
Abstract:
Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies economic order quantity (EOQ), just in time (JIT), vendor managed inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.
Keywords: Inventory Policy, Ranking, DBA, Selection criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18261962 Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions
Authors: Mohsen Pirdashti, Arezou Ghadi, Mehrdad Mohammadi, Gholamreza Shojatalab
Abstract:
Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.Keywords: Chemical Engineering, R&D Project, MCDM, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40871961 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
Authors: T. S. Chou, K. K. Yen, J. Luo
Abstract:
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321960 Influence of the Entropic Parameter on the Flow Geometry and Morphology
Authors: D. Mirauda, M. Greco, A. Volpe Plantamura
Abstract:
The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.
Keywords: Froude number, entropic parameter, roughness, water discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13151959 Unsteady Poiseuille Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of spherical cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21151958 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.
Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20881957 Anomaly Detection using Neuro Fuzzy system
Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani
Abstract:
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectivelyKeywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831956 Homotopy Analysis Method for Hydromagnetic Plane and Axisymmetric Stagnation-point Flow with Velocity Slip
Authors: Jing Zhu, Liancun Zheng, Xinxin Zhang
Abstract:
This work is focused on the steady boundary layer flow near the forward stagnation point of plane and axisymmetric bodies towards a stretching sheet. The no slip condition on the solid boundary is replaced by the partial slip condition. The analytical solutions for the velocity distributions are obtained for the various values of the ratio of free stream velocity and stretching velocity, slip parameter, the suction and injection velocity parameter, magnetic parameter and dimensionality index parameter in the series forms with the help of homotopy analysis method (HAM). Convergence of the series is explicitly discussed. Results show that the flow and the skin friction coefficient depend heavily on the velocity slip factor. In addition, the effects of all the parameters mentioned above were more pronounced for plane flows than for axisymmetric flows.Keywords: slip flow, axisymmetric flow, homotopy analysismethod, stagnation-point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001955 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181954 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19061953 Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Ellipsoidal cross-section, Porous media, Second order fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16931952 Performance Analysis of Software Reliability Models using Matrix Method
Authors: RajPal Garg, Kapil Sharma, Rajive Kumar, R. K. Garg
Abstract:
This paper presents a computational methodology based on matrix operations for a computer based solution to the problem of performance analysis of software reliability models (SRMs). A set of seven comparison criteria have been formulated to rank various non-homogenous Poisson process software reliability models proposed during the past 30 years to estimate software reliability measures such as the number of remaining faults, software failure rate, and software reliability. Selection of optimal SRM for use in a particular case has been an area of interest for researchers in the field of software reliability. Tools and techniques for software reliability model selection found in the literature cannot be used with high level of confidence as they use a limited number of model selection criteria. A real data set of middle size software project from published papers has been used for demonstration of matrix method. The result of this study will be a ranking of SRMs based on the Permanent value of the criteria matrix formed for each model based on the comparison criteria. The software reliability model with highest value of the Permanent is ranked at number – 1 and so on.Keywords: Matrix method, Model ranking, Model selection, Model selection criteria, Software reliability models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23161951 PID Parameter Optimization of an UAV Longitudinal Flight Control System
Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov
Abstract:
In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37451950 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data
Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez
Abstract:
Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.
Keywords: Feature Selection Stability, Spectral data, Data visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15251949 Characterization of the In0.53Ga0.47As n+nn+ Photodetectors
Authors: Fatima Zohra Mahi, Luca Varani
Abstract:
We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detective parameter for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed by considering the free carries fluctuations. The responsivity and the detection parameter are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.
Keywords: Responsivity, detection parameter, photo-detectors, continuity equation, current noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621948 Parameter Estimation of Diode Circuit Using Extended Kalman Filter
Authors: Amit Kumar Gautam, Sudipta Majumdar
Abstract:
This paper presents parameter estimation of a single-phase rectifier using extended Kalman filter (EKF). The state space model has been obtained using Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode current of the circuit have been estimated using EKF. Simulation results validate the better accuracy of the proposed method as compared to the least mean square method (LMS). Further, EKF has the advantage that it can be used for nonlinear systems.Keywords: Extended Kalman filter, parameter estimation, single phase rectifier, state space modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9031947 A Hybridized Competency-Based Teacher Candidate Selection System
Authors: R. Ramli, M. I. Ghazali, H. Ibrahim, M. M. Kasim, F. M. Kamal, S.Vikneswari
Abstract:
Teachers form the backbone of any educational system, hence selecting qualified candidates is very crucial. In Malaysia, the decision making in the selection process involves a few stages: Initial filtering through academic achievement, taking entry examination and going through an interview session. The last stage is the most challenging since it highly depends on human judgment. Therefore, this study sought to identify the selection criteria for teacher candidates that form the basis for an efficient multi-criteria teacher-candidate selection model for that last stage. The relevant criteria were determined from the literature and also based on expert input that is those who were involved in interviewing teacher candidates from a public university offering the formal training program. There are three main competency criteria that were identified which are content of knowledge, communication skills and personality. Further, each main criterion was divided into a few subcriteria. The Analytical Hierarchy Process (AHP) technique was employed to allocate weights for the criteria and later, integrated a Simple Weighted Average (SWA) scoring approach to develop the selection model. Subsequently, a web-based Decision Support System was developed to assist in the process of selecting the qualified teacher candidates. The Teacher-Candidate Selection (TeCaS) system is able to assist the panel of interviewers during the selection process which involves a large amount of complex qualitative judgments.
Keywords: Analytic Hierarchy Process, Simple Weighted Average, Decision Support System, Multi-criteria decision making problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871946 Investigation Wintering And Breeding Habitat Selection by Asiatic Houbara Bustard (Chlamydotis macqueenii ) In Central Steppe of Iran
Authors: S. Aghainajafi Zadeh, M.R. Hemami., F. Heydari
Abstract:
Asiatic Houbara ( Chlamydotis macqueenii ) is a flagship and vulnerable species. In-situ conservation of this threatened species demands for knowledge of its habitat selection. The aim of this study was to determine habitat variables influencing birds wintering and breeding selection in semi- arid central Iran. Habitat features of the detected nest and pellet sites were compared with paired and random plots by quantifying a number of habitat variables. In wintering habitat use at micro scale houbara selected sites where vegetation cover was significantly lower compard to control sites( p< 0.001). Areas with low number of larger plant species (p=0.03) that were not too close to a vegetation patch(p<0.001) were selected for breeding habitat.Keywords: Asiatic houbara bustard, Habitat selection, Nest, pellet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15241945 Gene Selection Guided by Feature Interdependence
Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel
Abstract:
Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.
Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21441944 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24191943 Logistics Information and Customer Service
Authors: Š. Čemerková, M. Wilczková
Abstract:
The paper deals with the importance of information flow for providing of defined level of customer service in the firms. Setting of the criteria for the selection and implementation of logistics information system is a prerequisite for ensuring of the flow of information in firms. The decision on the selection and implementation of logistics information system is linked to the investment costs and operating costs, which are included in the total logistics costs. The article also deals with the conclusions of the research focused on the logistics information system selection in companies in the Czech Republic.
Keywords: Customer service, information system, logistics, research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691942 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.
Keywords: Area-based traffic, car-following model, micro-simulation, stochastic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7731941 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10341940 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection
Authors: Ethan Shafer, Timothy Graziano, Jay Fisher
Abstract:
This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.
Keywords: STEM major, STEM, pedagogy, digital literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101939 Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach
Authors: Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAsghari
Abstract:
This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.Keywords: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874