Search results for: Optimal Termination Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8581

Search results for: Optimal Termination Model

8461 Optimal Channel Equalization for MIMO Time-Varying Channels

Authors: Ehab F. Badran, Guoxiang Gu

Abstract:

We consider optimal channel equalization for MIMO (multi-input/multi-output) time-varying channels in the sense of MMSE (minimum mean-squared-error), where the observation noise can be non-stationary. We show that all ZF (zero-forcing) receivers can be parameterized in an affine form which eliminates completely the ISI (inter-symbol-interference), and optimal channel equalizers can be designed through minimization of the MSE (mean-squarederror) between the detected signals and the transmitted signals, among all ZF receivers. We demonstrate that the optimal channel equalizer is a modified Kalman filter, and show that under the AWGN (additive white Gaussian noise) assumption, the proposed optimal channel equalizer minimizes the BER (bit error rate) among all possible ZF receivers. Our results are applicable to optimal channel equalization for DWMT (discrete wavelet multitone), multirate transmultiplexers, OFDM (orthogonal frequency division multiplexing), and DS (direct sequence) CDMA (code division multiple access) wireless data communication systems. A design algorithm for optimal channel equalization is developed, and several simulation examples are worked out to illustrate the proposed design algorithm.

Keywords: Channel equalization, Kalman filtering, Time-varying systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
8460 A Fuzzy Mixed Integer Multi-Scenario Portfolio Optimization Model

Authors: M. S. Osman, A. A. Tharwat, I. A. El-Khodary, A. G. Chalabi

Abstract:

In this paper, we propose a multiple objective optimization model with respect to portfolio selection problem for investors looking forward to diversify their equity investments in a number of equity markets. Based on Markowitz-s M-V model we developed a Fuzzy Mixed Integer Multi-Objective Nonlinear Programming Problem (FMIMONLP) to maximize the investors- future gains on equity markets, reach the optimal proportion of the budget to be invested in different equities. A numerical example with a comprehensive analysis on artificial data from several equity markets is presented in order to illustrate the proposed model and its solution method. The model performed well compared with the deterministic version of the model.

Keywords: Equity Markets, Future Scenarios, PortfolioSelection, Multiple Criteria Fuzzy Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
8459 Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks

Authors: Rooholah Hasanizadeh, Saadan Zokaei

Abstract:

In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.

Keywords: Optimal power allocation, cooperative MISO scheme, sensor networks, diversity branch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
8458 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
8457 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
8456 An Efficient Iterative Updating Method for Damped Structural Systems

Authors: Jiashang Jiang

Abstract:

Model updating is an inverse eigenvalue problem which concerns the modification of an existing but inaccurate model with measured modal data. In this paper, an efficient gradient based iterative method for updating the mass, damping and stiffness matrices simultaneously using a few of complex measured modal data is developed. Convergence analysis indicates that the iterative solutions always converge to the unique minimum Frobenius norm symmetric solution of the model updating problem by choosing a special kind of initial matrices.

Keywords: Model updating, iterative algorithm, damped structural system, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
8455 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

Authors: V. K. Banga, R. Kumar, Y. Singh

Abstract:

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
8454 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: Decentralized, optimal control, output, singular perturb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
8453 Evaluation of Optimum Performance of Lateral Intakes

Authors: Mohammad Reza Pirestani, Hamid Reza Vosoghifar, Pegah Jazayeri

Abstract:

In designing river intakes and diversion structures, it is paramount that the sediments entering the intake are minimized or, if possible, completely separated. Due to high water velocity, sediments can significantly damage hydraulic structures especially when mechanical equipment like pumps and turbines are used. This subsequently results in wasting water, electricity and further costs. Therefore, it is prudent to investigate and analyze the performance of lateral intakes affected by sediment control structures. Laboratory experiments, despite their vast potential and benefits, can face certain limitations and challenges. Some of these include: limitations in equipment and facilities, space constraints, equipment errors including lack of adequate precision or mal-operation, and finally, human error. Research has shown that in order to achieve the ultimate goal of intake structure design – which is to design longlasting and proficient structures – the best combination of sediment control structures (such as sill and submerged vanes) along with parameters that increase their performance (such as diversion angle and location) should be determined. Cost, difficulty of execution and environmental impacts should also be included in evaluating the optimal design. This solution can then be applied to similar problems in the future. Subsequently, the model used to arrive at the optimal design requires high level of accuracy and precision in order to avoid improper design and execution of projects. Process of creating and executing the design should be as comprehensive and applicable as possible. Therefore, it is important that influential parameters and vital criteria is fully understood and applied at all stages of choosing the optimal design. In this article, influential parameters on optimal performance of the intake, advantages and disadvantages, and efficiency of a given design are studied. Then, a multi-criterion decision matrix is utilized to choose the optimal model that can be used to determine the proper parameters in constructing the intake.

Keywords: Diversion structures lateral intake, multi criteria decision making, optimal design, sediment control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
8452 Improving the Quantification Model of Internal Control Impact on Banking Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.

Keywords: Risk, Control, Banking, FMECA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
8451 Effect of Supplementary Premium on the Optimal Portfolio Policy in a Defined Contribution Pension Scheme with Refund of Premium Clauses

Authors: Edikan E. Akpanibah Obinichi C. Mandah Imoleayo S. Asiwaju

Abstract:

In this paper, we studied the effect of supplementary premium on the optimal portfolio policy in a defined contribution (DC) pension scheme with refund of premium clauses. This refund clause allows death members’ next of kin to withdraw their relative’s accumulated wealth during the accumulation period. The supplementary premium is to help sustain the scheme and is assumed to be stochastic. We considered cases when the remaining wealth is equally distributed and when it is not equally distributed among the remaining members. Next, we considered investments in cash and equity to help increase the remaining accumulated funds to meet up with the retirement needs of the remaining members and composed the problem as a continuous time mean-variance stochastic optimal control problem using the actuarial symbol and established an optimization problem from the extended Hamilton Jacobi Bellman equations. The optimal portfolio policy, the corresponding optimal fund size for the two assets and also the efficient frontier of the pension members for the two cases was obtained. Furthermore, the numerical simulations of the optimal portfolio policies with time were presented and the effect of the supplementary premium on the optimal portfolio policy was discussed and observed that the supplementary premium decreases the optimal portfolio policy of the risky asset (equity). Secondly we observed a disparity between the optimal policies for the two cases.

Keywords: Defined contribution pension scheme, extended Hamilton Jacobi Bellman equations, optimal portfolio policies, refund of premium clauses, supplementary premium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
8450 Design of a Reduced Order Robust Convex Controller for Flight Control System

Authors: S. Swain, P. S. Khuntia

Abstract:

In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.

Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
8449 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network

Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah

Abstract:

In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.

Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
8448 Optimal Capacitor Placement in Distribution Feeders

Authors: N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.

Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
8447 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: Flaring, Fuel gas network, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
8446 Analytical Study on the Shape of T-type Girder Modular Bridge Connection by Using Parameter

Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park

Abstract:

Recently, to cope with the rapidly changing construction trend with aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape of the transverse connection of T-type girder newly developed between the segmented modules is not verified. Therefore, the verification of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verified model of transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.

Keywords: Modular bridge, optimal transverse shape, parameter, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
8445 A New Approach to Optimal Control Problem Constrained by Canonical Form

Authors: B. Farhadinia

Abstract:

In this article, it is considered a class of optimal control problems constrained by differential and integral constraints are called canonical form. A modified measure theoretical approach is introduced to solve this class of optimal control problems.

Keywords: control problem, Canonical form, Measure theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
8444 Optimal and Generalized Multiple Descriptions Image Coding Transform in the Wavelet Domain

Authors: Bahi brahim, El hassane Ibn Elhaj, Driss Aboutajdine

Abstract:

In this paper we propose a Multiple Description Image Coding(MDIC) scheme to generate two compressed and balanced rates descriptions in the wavelet domain (Daubechies biorthogonal (9, 7) wavelet) using pairwise correlating transform optimal and application method for Generalized Multiple Description Coding (GMDC) to image coding in the wavelet domain. The GMDC produces statistically correlated streams such that lost streams can be estimated from the received data. Our performance test shown that the proposed method gives more improvement and good quality of the reconstructed image when the wavelet coefficients are normalized by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.

Keywords: Multiple description coding (MDC), gaussian scale mixture (GSM) model, joint source-channel coding, pairwise correlating transform, GMDCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
8443 Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.

Keywords: Binary Integer Linear Programming, BILP, Energy consumption, Optimal node placement and Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
8442 Method for Determining the Probing Points for Efficient Measurement of Freeform Surface

Authors: Yi Xu, Zexiang Li

Abstract:

In inspection and workpiece localization, sampling point data is an important issue. Since the devices for sampling only sample discrete points, not the completely surface, sampling size and location of the points will be taken into consideration. In this paper a method is presented for determining the sampled points size and location for achieving efficient sampling. Firstly, uncertainty analysis of the localization parameters is investigated. A localization uncertainty model is developed to predict the uncertainty of the localization process. Using this model the minimum size of the sampled points is predicted. Secondly, based on the algebra theory an eigenvalue-optimal optimization is proposed. Then a freeform surface is used in the simulation. The proposed optimization is implemented. The simulation result shows its effectivity.

Keywords: eigenvalue-optimal optimization, freeform surface inspection, sampling size and location, sampled points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
8441 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: Economic production quantity, random cost, supply chain management, vendor-managed inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
8440 Necessity of using an Optimum Business Model in High-Tech Firms, Nanotechnology Case Study

Authors: Reza Davoodi, Jahangir Yadollahi Farsi, Roya Naseri

Abstract:

In the way of growing and developing firms especially high-tech firms, on many occasions manager of firm is mainly involved in solving problems of his business and decision making about executive activities of the firm, while besides executive measures, attention to planning of firm's success and growth way and application of long experience and sagacity in designing business model are vital and necessary success in a business is achieved as a result of different factors, one of the most important of them is designing and performing an optimal business model at the beginning of the firm's work. This model is determining the limit of profitability achieved by innovation and gained value added. Therefore, business model is the process of connecting innovation environment and technology with economic environment and business and is important for succeeding modern businesses considering their traits.

Keywords: Business Model (BM), Nanotechnology, High- TechFirms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
8439 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
8438 Optimal Switching Strategies for Tracking of Currents of Voltage Source Converters

Authors: R. Oloomi, M. A. Sadrnia

Abstract:

This paper proposes a new optimal feedback controller for voltage source converters VSC's, for current regulated voltage source converters, which allows compensate the harmonics of current produced by nonlinear loads and load reactive power. The aim of the present paper is to describe a novel switching signal generation technique called optimal controller which guarantees that the injected currents follow the reference currents determined by the compensation strategy, with the smallest possible tracking error and fixed switching frequency. It is compared with well-known hysteresis current controller HCC. The validity of presented method and its comparison with HCC is studied through simulation results.

Keywords: Hysteresis Current Controller, Optimal Controller, Switching pattern, Voltage Source Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
8437 Optimal Network of Secondary Warehouses for Production-Distribution Inventory Model

Authors: G. M. Arun Prasath, N. Arthi

Abstract:

This work proposed a multi-objective mathematical programming approach to select the appropriate supply network elements. The multi-item multi-objective production-distribution inventory model is formulated with possible constraints under fuzzy environment. The unit cost has taken under fuzzy environment. The inventory model and warehouse location model has combined to formulate the production-distribution inventory model. Warehouse location is important in supply chain network. Particularly, if a company maintains more selling stores it cannot maintain individual secondary warehouse near to each selling store. Hence, maintaining the optimum number of secondary warehouses is important. Hence, the combined mathematical model is formulated to reduce the total expenditure of the organization by arranging the network of minimum number of secondary warehouses. Numerical example has been taken to illustrate the proposed model.

Keywords: Fuzzy inventory model, warehouse location model, triangular fuzzy number, secondary warehouse, LINGO software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
8436 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. 

Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
8435 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem

Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota

Abstract:

Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.

Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
8434 On the Optimal Number of Smart Dust Particles

Authors: Samee Ullah Khan, C. Ardil

Abstract:

Smart Dust particles, are small smart materials used for generating weather maps. We investigate question of the optimal number of Smart Dust particles necessary for generating precise, computationally feasible and cost effective 3–D weather maps. We also give an optimal matching algorithm for the generalized scenario, when there are N Smart Dust particles and M ground receivers.

Keywords: Remote sensing, smart dust, matching, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
8433 Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse

Authors: Batin Latif Aylak, Bernd Noche, M. Baran Cantepe, Aydin Karakaya

Abstract:

Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. The ultra-light overhead conveyor systems always must be integrated with a logistical process by finding a best way for a cheaper material flow in order to guarantee precise and fast workflows. This paper analyzes the process of an ultra-light overhead conveyor system using necessary assumptions. The analysis consists of three scenarios. These scenarios are based on raising the vehicle speeds with equal increments at each case. The correlation between the vehicle speed and system throughput is investigated. A discrete-event simulation model of an ultra-light overhead conveyor system is constructed using DOSIMIS-3 software to implement three scenarios. According to simulation results; the optimal scenario, hence the optimal vehicle speed, is found out among three scenarios. This simulation model demonstrates the effect of increased speed on the system throughput.

Keywords: Logistics, material flow, simulation, ultra-light overhead conveyor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
8432 Approaches to Determining Optimal Asset Structure for a Commercial Bank

Authors: Svetlana Saksonova

Abstract:

Every commercial bank optimises its asset portfolio depending on the profitability of assets and chosen or imposed constraints. This paper proposes and applies a stylized model for optimising banks' asset and liability structure, reflecting profitability of different asset categories and their risks as well as costs associated with different liability categories and reserve requirements. The level of detail for asset and liability categories is chosen to create a suitably parsimonious model and to include the most important categories in the model. It is shown that the most appropriate optimisation criterion for the model is the maximisation of the ratio of net interest income to assets. The maximisation of this ratio is subject to several constraints. Some are accounting identities or dictated by legislative requirements; others vary depending on the market objectives for a particular bank. The model predicts variable amount of assets allocated to loan provision.

Keywords: asset structure, commercial bank, model, optimisation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970