Search results for: Noise Variance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1245

Search results for: Noise Variance

1125 PIIN Suppression Using Random Diagonal Code for Spectral Amplitude Coding Optical CDMA System

Authors: Hilal Adnan Fadhil, Syed Alwei, R. Badlishah Ahmad

Abstract:

A new code for spectral-amplitude coding optical code-division multiple-access system is proposed called Random diagonal (RD) code. This code is constructed using code segment and data segment. One of the important properties of this code is that the cross correlation at data segment is always zero, which means that Phase Intensity Induced Noise (PIIN) is reduced. For the performance analysis, the effects of phase-induced intensity noise, shot noise, and thermal noise are considered simultaneously. Bit-error rate (BER) performance is compared with Hadamard and Modified Frequency Hopping (MFH) codes. It is shown that the system using this new code matrices not only suppress PIIN, but also allows larger number of active users compare with other codes. Simulation results shown that using point to point transmission with three encoded channels, RD code has better BER performance than other codes, also its found that at 0 dbm PIIN noise are 10-10 and 10-11 for RD and MFH respectively.

Keywords: OCDMA, MFH, PIIN, and BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1124 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

Authors: C. Ganesh Babu, P. T. Vanathi

Abstract:

In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1123 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method

Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng

Abstract:

To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.

Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
1122 Metal Streak Analysis with different Acquisition Settings in Postoperative Spine Imaging: A Phantom Study

Authors: N. D. Osman, M. S. Salikin, M. I. Saripan

Abstract:

CT assessment of postoperative spine is challenging in the presence of metal streak artifacts that could deteriorate the quality of CT images. In this paper, we studied the influence of different acquisition parameters on the magnitude of metal streaking. A water-bath phantom was constructed with metal insertion similar with postoperative spine assessment. The phantom was scanned with different acquisition settings and acquired data were reconstructed using various reconstruction settings. Standardized ROIs were defined within streaking region for image analysis. The result shows increased kVp and mAs enhanced SNR values by reducing image noise. Sharper kernel enhanced image quality compared to smooth kernel, but produced more noise in the images with higher CT fluctuation. The noise between both kernels were significantly different (P <0.05) with increment of noise in the bone kernel images (mean difference = 54.78). The technical settings should be selected appropriately to attain the acceptable image quality with the best diagnostic value.

Keywords: Computed tomography, metal streak, noise, CT fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
1121 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: Guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1120 Differentiation of Heart Rate Time Series from Electroencephalogram and Noise

Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, Paul Joseph K.

Abstract:

Analysis of heart rate variability (HRV) has become a popular non-invasive tool for assessing the activities of autonomic nervous system. Most of the methods were hired from techniques used for time series analysis. Currently used methods are time domain, frequency domain, geometrical and fractal methods. A new technique, which searches for pattern repeatability in a time series, is proposed for quantifying heart rate (HR) time series. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are able to distinguish HR data clearly from noise and electroencephalogram (EEG). The results of analysis using these measures give an insight into the fundamental difference between the composition of HR time series with respect to EEG and noise.

Keywords: Approximate entropy, heart rate variability, noise, pattern repeatability, and sample entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1119 Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System

Authors: A. Zolfagharian, M.Z. Md. Zain, A. R. AbuBakar, M. Hussein

Abstract:

Application of flexible structures has been significantly, increased in industry and aerospace missions due to their contributions and unique advantages over the rigid counterparts. In this paper, vibration analysis of a flexible structure i.e., automobile wiper blade is investigated and controlled. The wiper generates unwanted noise and vibration during the wiping the rain and other particles on windshield which may cause annoying noise in different ranges of frequency. A two dimensional analytical modeled wiper blade whose model accuracy is verified by numerical studies in literature is considered in this study. Particle swarm optimization (PSO) is employed in alliance with input shaping (IS) technique in order to control or to attenuate the amplitude level of unwanted noise/vibration of the wiper blade.

Keywords: Input shaping, noise reduction, particle swarmoptimization, wiper blade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
1118 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1117 Estimation of Individual Power of Noise Sources Operating Simultaneously

Authors: Pankaj Chandna, Surinder Deswal, Arunesh Chandra, SK Sharma

Abstract:

Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.

Keywords: Industrial noise, sound power level, multiple noise sources, sources contribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
1116 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: Noise signal, pulse interference, signal power, spectrum width, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
1115 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
1114 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: Globular protein, modulating function, white noise, winding probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
1113 Approximation Approach to Linear Filtering Problem with Correlated Noise

Authors: Hong Son Hoang, Remy Baraille

Abstract:

The (sub)-optimal soolution of linear filtering problem with correlated noises is considered. The special recursive form of the class of filters and criteria for selecting the best estimator are the essential elements of the design method. The properties of the proposed filter are studied. In particular, for Markovian observation noise, the approximate filter becomes an optimal Gevers-Kailath filter subject to a special choice of the parameter in the class of given linear recursive filters.

Keywords: Linear dynamical system, filtering, minimum meansquare filter, correlated noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
1112 Performance of Subcarrier- OCDMA System with Complementary Subtraction Detection Technique

Authors: R. K. Z. Sahbudin, M. K. Abdullah, M. Mokhtar, S. B. A. Anas, S. Hitam

Abstract:

A subcarrier - spectral amplitude coding optical code division multiple access system using the Khazani-Syed code with Complementary subtraction detection technique is proposed. The proposed system has been analyzed by taking into account the effects of phase-induced intensity noise, shot noise, thermal noise and intermodulation distortion noise. The performance of the system has been compared with the spectral amplitude coding optical code division multiple access system using the Hadamard code and the Modified Quadratic Congruence code. The analysis shows that the proposed system can eliminate the multiple access interference using the Complementary subtraction detection technique, and hence improve the overall system performance.

Keywords: Complementary subtraction, Khazani-Syed code, multiple access interference, phase-induced intensity noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1111 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising

Authors: Jianwei Ma, Diriba Gemechu

Abstract:

In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.

Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
1110 Sound Insulation between Buildings: The Impact Noise Transmission through Different Floor Configurations

Authors: Abdelouahab Bouttout, Mohamed Amara

Abstract:

The present paper examines the impact noise transmission through some floor building assemblies. The Acoubat software numerical simulation has been used to simulate the impact noise transmission through different floor configurations used in Algerian construction mode. The results are compared with the available measurements. We have developed two experimental methods, i) field method, and ii) laboratory method using Brüel and Kjær equipments. The results show that the different cases of floor configurations need some improvement to ensure the acoustic comfort in the receiving apartment. The recommended value of the impact sound level in the receiving room should not exceed 58 dB. The important results obtained in this paper can be used as platform to improve the Algerian building acoustic regulation aimed at the construction of the multi-storey residential building.

Keywords: Impact noise, building acoustic, floor insulation, resilient material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703
1109 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference  spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signalis is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, test-statistics, degradation, spatial processing, multielement antenna array

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1108 Estimation of the Mean of the Selected Population

Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal

Abstract:

Two normal populations with different means and same variance are considered, where the variance is known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the mehod of Monte-Carlo simulation and their performances are analysed with the help of graphs.

Keywords: Estimation after selection, Brewster-Zidek technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
1107 Comparative Approach of Measuring Price Risk on Romanian and International Wheat Market

Authors: Larisa N. Pop, Irina M. Ban

Abstract:

This paper aims to present the main instruments used in the economic literature for measuring the price risk, pointing out on the advantages brought by the conditional variance in this respect. The theoretical approach will be exemplified by elaborating an EGARCH model for the price returns of wheat, both on Romanian and on international market. To our knowledge, no previous empirical research, either on price risk measurement for the Romanian markets or studies that use the ARIMA-EGARCH methodology, have been conducted. After estimating the corresponding models, the paper will compare the estimated conditional variance on the two markets.

Keywords: conditional variance, GARCH models, price risk, volatility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1106 Noise Performance Optimization of a Fast Wavelength Calibration Algorithm for OSAs

Authors: Thomas Fuhrmann

Abstract:

A new fast correlation algorithm for calibrating the wavelength of Optical Spectrum Analyzers (OSAs) was introduced in [1]. The minima of acetylene gas spectra were measured and correlated with saved theoretical data [2]. So it is possible to find the correct wavelength calibration data using a noisy reference spectrum. First tests showed good algorithmic performance for gas line spectra with high noise. In this article extensive performance tests were made to validate the noise resistance of this algorithm. The filter and correlation parameters of the algorithm were optimized for improved noise performance. With these parameters the performance of this wavelength calibration was simulated to predict the resulting wavelength error in real OSA systems. Long term simulations were made to evaluate the performance of the algorithm over the lifetime of a real OSA.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
1105 Signal-to-Noise Ratio Improvement of EMCCD Cameras

Authors: Wen W. Zhang, Qian Chen, Bei B. Zhou, Wei J. He

Abstract:

Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.

Keywords: EMCCD, SNR improvement, pixel binning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2872
1104 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image

Authors: Yohei Saika, Yuji Haraguchi

Abstract:

We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.

Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
1103 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
1102 Speech Enhancement Using Kalman Filter in Communication

Authors: Eng. Alaa K. Satti Salih

Abstract:

Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.

Keywords: Autoregressive Process, Kalman filter, Matlab and Noise speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025
1101 Noise Removal from Surface Respiratory EMG Signal

Authors: Slim Yacoub, Kosai Raoof

Abstract:

The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.

Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4324
1100 Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain

Authors: Mario Mastriani, Alberto E. Giraldez

Abstract:

We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on a smoothing of the coefficients of the highest subbands. Specifically, we decompose the noisy microarray into wavelet subbands, apply smoothing within each highest subband, and reconstruct a microarray from the modified wavelet coefficients. This process is applied a single time, and exclusively to the first level of decomposition, i.e., in most of the cases, it is not necessary a multirresoltuion analysis. Denoising results compare favorably to the most of methods in use at the moment.

Keywords: Directional smoothing, denoising, edge preservation, microarrays, thresholding, wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
1099 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: Temporal differencing, video summarization, histogram differencing, sum conditional variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1098 Construction Noise Management: Hong Kong Reviews and International Best Practices

Authors: Morgan Cheng, Wilson Ho, Max Yiu, Dragon Tsui, Wylog Wong, Yasir A. Naveed, C. S. Loong, Richard Kwan, K. C. Lam, Hannah Lo, C. L. Wong

Abstract:

Hong Kong is known worldwide for high density living and the ability to thrive under trying circumstances. The 7.5 million residents of this busy metropolis live primarily in high-rise buildings which are built and demolished incessantly. Hong Kong residents are therefore affected continuously by numerous construction activities. In 2020, the Hong Kong Environmental Protection Department (EPD) commissioned a feasibility study on the management of construction noise, including those associated with renovation of domestic premises. A key component of the study focused on the review of practices concerning the management and control of construction noise in metropolitans in other parts of the world. To benefit from international best practices, this extensive review aimed at identifying possible areas of improvement in Hong Kong. The study first referred to the United Nations “The World’s Cities in 2016” Report and examined the top 100 cities therein. The 20 most suitable cities were then chosen for further review. Upon further screening, 12 cities with more relevant management practices were selected for further scrutiny. These 12 cities include: Asia – Tokyo, Seoul, Taipei, Guangzhou, Singapore; Europe – City of Westminster (London), Berlin; North America – Toronto, New York City, San Francisco; Oceania – Sydney, Melbourne. Subsequently, three cities, namely Sydney, City of Westminster, and New York City, were selected for in-depth review. These three were chosen primarily because of the maturity, success, and effectiveness of their construction noise management and control measures, as well as their similarity to Hong Kong in certain key aspects. One of the more important findings of the review is the importance of early focus on potential noise issues, with the objective of designing the noise away wherever practicable. The study examined the similar yet different construction noise early focus mechanisms of these three cities. This paper describes this landmark, worldwide and extensive review on international best construction noise management and control practices at the source, along the noise transmission path and at the receiver end. The methodology, approach, and key findings are presented succinctly in this paper. By sharing the findings with the acoustics professionals worldwide, it is hoped that more advanced and mature construction noise management practices can be developed to attain urban sustainability.

Keywords: construction noise, international best practices, noise control and noise management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
1097 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series

Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser

Abstract:

In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.

Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
1096 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology

Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur

Abstract:

Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.

Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910