Search results for: Markov random model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7911

Search results for: Markov random model.

7791 Simulation of Sample Paths of Non Gaussian Stationary Random Fields

Authors: Fabrice Poirion, Benedicte Puig

Abstract:

Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt-s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.

Keywords: Simulation, nonGaussian, random field, multivariate, stochastic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
7790 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
7789 The Gerber-Shiu Functions of a Risk Model with Two Classes of Claims and Random Income

Authors: Shan Gao

Abstract:

In this paper, we consider a risk model involving two independent classes of insurance risks and random premium income. We assume that the premium income process is a Poisson Process, and the claim number processes are independent Poisson and generalized Erlang(n) processes, respectively. Both of the Gerber- Shiu functions with zero initial surplus and the probability generating functions (p.g.f.) of the Gerber-Shiu functions are obtained.

Keywords: Poisson process, generalized Erlang risk process, Gerber-Shiu function, generating function, generalized Lundberg equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
7788 Memory Effects in Randomly Perturbed Nematic Liquid Crystals

Authors: Amid Ranjkesh, Milan Ambrožič, Samo Kralj

Abstract:

We study the typical domain size and configuration character of a randomly perturbed system exhibiting continuous symmetry breaking. As a model system we use rod-like objects within a cubic lattice interacting via a Lebwohl–Lasher-type interaction. We describe their local direction with a headless unit director field. An example of such systems represents nematic LC or nanotubes. We further introduce impurities of concentration p, which impose the random anisotropy field-type disorder to directors. We study the domain-type pattern of molecules as a function of p, anchoring strength w between a neighboring director and impurity, temperature, history of samples. In simulations we quenched the directors either from the random or homogeneous initial configuration. Our results show that a history of system strongly influences: i) the average domain coherence length; and ii) the range of ordering in the system. In the random case the obtained order is always short ranged (SR). On the contrary, in the homogeneous case, SR is obtained only for strong enough anchoring and large enough concentration p. In other cases, the ordering is either of quasi long range (QLR) or of long range (LR). We further studied memory effects for the random initial configuration. With increasing external ordering field B either QLR or LR is realized.

Keywords: Lebwohl-Lasher model, liquid crystals, disorder, memory effect, orientational order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
7787 Comparative Study - Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important in avoid incident of natural disaster which can cause loss in involved area. This review paper involves three techniques from artificial intelligence namely logistic regression, decisions tree, and random forest which used in making precipitation forecast. These combination techniques through VAR model in finding advantages and strength for every technique in forecast process. Data contains variables from rain domain. Adaptation of artificial intelligence techniques involved on rain domain enables the process to be easier and systematic for precipitation forecast.

Keywords: Logistic regression, decisions tree, random forest, VAR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
7786 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: L. Basha, E. Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable on one country's competitiveness, trade and current account, inflation, wages, domestic economic activity and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021 and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables in the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: Exchange rate, Random Forest, time series, Machine Learning, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
7785 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: Spacecraft control, quantized control, nonlinear control, random dither method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
7784 A Single-Period Inventory Problem with Resalable Returns: A Fuzzy Stochastic Approach

Authors: Oshmita Dey, Debjani Chakraborty

Abstract:

In this paper, a single period inventory model with resalable returns has been analyzed in an imprecise and uncertain mixed environment. Demand has been introduced as a fuzzy random variable. In this model, a single order is placed before the start of the selling season. The customer, for a full refund, may return purchased products within a certain time interval. Returned products are resalable, provided they arrive back before the end of the selling season and are found to be undamaged. Products remaining at the end of the season are salvaged. All demands not met directly are lost. The probabilities that a sold product is returned and that a returned product is resalable, both imprecise in a real situation, have been assumed to be fuzzy in nature.

Keywords: Fuzzy random variable, Modified graded meanintegration, Internet mail order, Inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
7783 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation

Authors: Pavlo Selyshchev

Abstract:

We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.

 

Keywords: Irradiation, Primary Defects, Interaction, Fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
7782 Strong Limit Theorems for Dependent Random Variables

Authors: Libin Wu, Bainian Li

Abstract:

In This Article We establish moment inequality of dependent random variables,furthermore some theorems of strong law of large numbers and complete convergence for sequences of dependent random variables. In particular, independent and identically distributed Marcinkiewicz Law of large numbers are generalized to the case of m0-dependent sequences.

Keywords: Lacunary System, Generalized Gaussian, NA sequences, strong law of large numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
7781 Strong Law of Large Numbers for *- Mixing Sequence

Authors: Bainian Li, Kongsheng Zhang

Abstract:

Strong law of large numbers and complete convergence for sequences of *-mixing random variables are investigated. In particular, Teicher-s strong law of large numbers for independent random variables are generalized to the case of *-mixing random sequences and extended to independent and identically distributed Marcinkiewicz Law of large numbers for *-mixing.

Keywords: mixing squences, strong law of large numbers, martingale differences, Lacunary System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
7780 Modified Fuzzy PID Control for Networked Control Systems with Random Delays

Authors: Yong-can Cao, Wei-dong Zhang

Abstract:

To deal with random delays in Networked Control System (NCS), Modified Fuzzy PID Controller is introduced in this paper to implement real-time control adaptively. Via adjusting the control signal dynamically, the system performance is improved. In this paper, the design process and the ultimate simulation results are represented. Finally, examples and corresponding comparisons prove the significance of this method.

Keywords: Fuzzy Control, Networked Control System, PID, Random Delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
7779 VoIP Source Model based on the Hyperexponential Distribution

Authors: Arkadiusz Biernacki

Abstract:

In this paper we present a statistical analysis of Voice over IP (VoIP) packet streams produced by the G.711 voice coder with voice activity detection (VAD). During telephone conversation, depending whether the interlocutor speaks (ON) or remains silent (OFF), packets are produced or not by a voice coder. As index of dispersion for both ON and OFF times distribution was greater than one, we used hyperexponential distribution for approximation of streams duration. For each stage of the hyperexponential distribution, we tested goodness of our fits using graphical methods, we calculated estimation errors, and performed Kolmogorov-Smirnov test. Obtained results showed that the precise VoIP source model can be based on the five-state Markov process.

Keywords: VoIP source modelling, distribution approximation, hyperexponential distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
7778 Improvement of MLLR Speaker Adaptation Using a Novel Method

Authors: Ing-Jr Ding

Abstract:

This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of speaker adaptation experiments are carried out at a 30 famous city names database to investigate the efficiency of the proposed method. Experimental results show that the WMLLR method outperforms the conventional MLLR method, especially when only few utterances from a new speaker are available for adaptation.

Keywords: hidden Markov model, maximum likelihood linearregression, speech recognition, speaker adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
7777 Spatially Random Sampling for Retail Food Risk Factors Study

Authors: Guilan Huang

Abstract:

In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.

Keywords: Geospatial technology, restaurant, retail food risk factors study, spatial random sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
7776 Using Fractional Factorial Designs for Variable Importance in Random Forest Models

Authors: Ewa. M. Sztendur, Neil T. Diamond

Abstract:

Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.

Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
7775 Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector

Authors: Guangpu Chen

Abstract:

When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.

Keywords: Monotonic, Rosenblatt, Nataf transformation, dependence concepts, completely positive matrices, Gaussiancopulas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
7774 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: D. Hişam, S. İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.

Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
7773 An Alternative Method for Generating Almost Infinite Sequence of Gaussian Variables

Authors: Nyah C. Temaneh, F. A. Phiri, E. Ruhunga

Abstract:

Most of the well known methods for generating Gaussian variables require at least one standard uniform distributed value, for each Gaussian variable generated. The length of the random number generator therefore, limits the number of independent Gaussian distributed variables that can be generated meanwhile the statistical solution of complex systems requires a large number of random numbers for their statistical analysis. We propose an alternative simple method of generating almost infinite number of Gaussian distributed variables using a limited number of standard uniform distributed random numbers.

Keywords: Gaussian variable, statistical analysis, simulation ofCommunication Network, Random numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
7772 A New Approach to Feedback Shift Registers

Authors: Myat Su Mon Win

Abstract:

The pseudorandom number generators based on linear feedback shift registers (LFSRs), are very quick, easy and secure in the implementation of hardware and software. Thus they are very popular and widely used. But LFSRs lead to fairly easy cryptanalysis due to their completely linearity properties. In this paper, we propose a stochastic generator, which is called Random Feedback Shift Register (RFSR), using stochastic transformation (Random block) with one-way and non-linearity properties.

Keywords: Linear Feedback Shift Register, Non Linearity, R_Block, Random Feedback Shift Register

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
7771 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: Low-frequency noise, Random Telegraph Noise, Dynamic Variation, SRRV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
7770 Data Oriented Modeling of Uniform Random Variable: Applied Approach

Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mirkamal Mirnia, Mohamad Teshnelab, Ehsan Shahamatnia

Abstract:

In this paper we introduce new data oriented modeling of uniform random variable well-matched with computing systems. Due to this conformity with current computers structure, this modeling will be efficiently used in statistical inference.

Keywords: Uniform random variable, Data oriented modeling, Statistical inference, Prodigraph, Statistically complete tree, Uniformdigital probability digraph, Uniform n-complete probability tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
7769 Availability Analysis of Milling System in a Rice Milling Plant

Authors: P. C. Tewari, Parveen Kumar

Abstract:

The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.

Keywords: Markov process, milling system, availability modeling, rice milling plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
7768 Improving Protein-Protein Interaction Prediction by Using Encoding Strategies and Random Indices

Authors: Essam Al-Daoud

Abstract:

A New features are extracted and compared to improve the prediction of protein-protein interactions. The basic idea is to select and use the best set of features from the Tensor matrices that are produced by the frequency vectors of the protein sequences. Three set of features are compared, the first set is based on the indices that are the most common in the interacting proteins, the second set is based on the indices that tend to be common in the interacting and non-interacting proteins, and the third set is constructed by using random indices. Moreover, three encoding strategies are compared; that are based on the amino asides polarity, structure, and chemical properties. The experimental results indicate that the highest accuracy can be obtained by using random indices with chemical properties encoding strategy and support vector machine.

Keywords: protein-protein interactions, random indices, encoding strategies, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
7767 Performance Comparison for AODV, DSR and DSDV W.R.T. CBR and TCP in Large Networks

Authors: Ibrahim M. Buamod, Muattaz Elaneizi

Abstract:

Mobile Ad hoc Network (MANET) is a wireless ad hoc self-configuring network of mobile routers (and associated hosts) connected by wireless links, the union of which forms an arbitrary topology, cause of the random mobility of the nodes. In this paper, an attempt has been made to compare these three protocols DSDV, AODV and DSR on the performance basis under different traffic protocols namely CBR and TCP in a large network. The simulation tool is NS2, the scenarios are made to see the effect of pause times. The results presented in this paper clearly indicate that the different protocols behave differently under different pause times. Also, the results show the main characteristics of different traffic protocols operating on MANETs and thus select the best protocol on each scenario.

Keywords: Awk, CBR, Random waypoint model, TCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
7766 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability

Authors: Pradeep Kumar, Abdul Wahid

Abstract:

Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.

Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
7765 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
7764 The Giant Component in a Random Subgraph of a Weak Expander

Authors: Yilun Shang

Abstract:

In this paper, we investigate the appearance of the giant component in random subgraphs G(p) of a given large finite graph family Gn = (Vn, En) in which each edge is present independently with probability p. We show that if the graph Gn satisfies a weak isoperimetric inequality and has bounded degree, then the probability p under which G(p) has a giant component of linear order with some constant probability is bounded away from zero and one. In addition, we prove the probability of abnormally large order of the giant component decays exponentially. When a contact graph is modeled as Gn, our result is of special interest in the study of the spread of infectious diseases or the identification of community in various social networks.

Keywords: subgraph, expander, random graph, giant component, percolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
7763 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
7762 Summing ANFIS PID Control of Passenger Seat Vibrations in Active Quarter Car Model

Authors: Devdutt

Abstract:

In this paper, passenger seat vibration control of an active quarter car model under random road excitations is considered. The designed ANFIS and Summing ANFIS PID controllers are assembled in primary suspension system of quarter car model. Simulation work is performed in time and frequency domain to obtain passenger seat acceleration and displacement responses. Simulation results show that Summing ANFIS PID based controller is highly suitable to suppress the road induced vibrations in quarter car model to achieve desired passenger ride comfort and safety compared to ANFIS and passive system.

Keywords: Quarter car model, Active suspension system, Summing ANFIS PID controller, Passenger ride comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876