Strong Law of Large Numbers for *- Mixing Sequence

Bainian Li, Kongsheng Zhang

Abstract—Strong law of large numbers and complete convergence for sequences of *-mixing random variables are investigated. In particular, Teicher's strong law of large numbers for independent random variables are generalized to the case of *-mixing random sequences and extended to independent and identically distributed Marcinkiewicz Law of large numbers for *-mixing.

Keywords—*-mixing squences; strong law of large numbers; martingale differences; Lacunary System

I. INTRODUCTION

ET (Ω, F, P) be a probability space and let $\{X_n, n = 1, 2, ...\}$ be a sequence of real-valued random variables defined on (Ω, F, P) . For each positive integer n, let F_n be the smallest σ -algebra with respect to which X_n is measurable and for $n \leq m$, let F_n^m be the smallest σ -algebra with respect to which X_n , ..., X_m are jointly measurable.

Definition 1.1. Let $\{X_n, n \ge 1\}$ be a sequence of random variable, X_n is named *-mixing if there exists a positive integer N and function f such that $f \downarrow 0$ and for all $n \ge N, m \ge 1, A \in F_1^m, B \in F_{m+n}^\infty$,

$$|P(AB) - P(A)P(B)| \le f(n)P(A)P(B).$$
(1)

Evidently, inequality (1) is equivalent to the condition for all $B \in F_{m+n}^{\infty}$,

$$|P(B|F_1^m) - P(B)| \le f(n)P(B) \ a.s.$$
(2)

It follows that X_n is integrable, and

$$|E(X_{m+n}|F_1^m) - E(X_{m+n})| \le f(n)E|X_{m+n}| \qquad (3)$$

The following strong law for *-mixing sequences can be found in Blum[1].

Theorem A. Let $\{X_n, n \ge 1\}$ be a *-mixing sequence such that $EX_n = 0$, and $EX_n^2 < \infty$, $n \ge 1$, and $\sum_{i=1}^{\infty} EX_i^2/i^2 < \infty$, then

$$\sum_{i=1}^{n} X_i/n \longrightarrow 0, a.s.$$
(4)

In this paper we shall further generalize Theorem A.

II. MAIN RESULTS

Theorem 2.1. Let $\{Y_n, n \ge 1\}$ be a nonnegative *-mixing sequence such that $EY_i = \mu_i \le K < \infty$, for all *i*, and $\sum_{i=1}^{\infty} EY_i^2/i^2 < \infty$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_i) = 0, a.s.$$
 (5)

Bainian Li and Kongsheng Zhang are with the School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030 PR China, email: libainian49@163.com, zks155@163.com To complete the proof, we need the following lemma

Lemma 2.2. ([2]) Suppose $\{Y_n, n \ge 1\}$ is a *-mixing sequence, $EY_i < \infty, i \ge 1$, for any σ -field $B \in F_1^m, m \ge M$, then

$$|E(Y_{m+n}|B) - E(Y_{m+n})| \le f(m)E|Y_{m+n}|.$$
 (6)

Proof of Theorem 2.1. Let $X_i = Y_i - \mu_i$, then $EX_i = 0, E|X_i| \le 2K$, it suffices to prove

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = 0, a.s.$$
 (7)

By lemma 2.2, for any $\varepsilon > 0$, there exists M' > 0 for all $n \ge 2$, we get

$$|E(X_{nM'+R}|F_{M'+R}^{(n-1)M'+R})| \le f(M')E|X_{nM'+R}| \le 2K\varepsilon,$$
(8)

where R is a nonnegative integer, and $0 \le R \le M' - 1$. For R = 0, 1, ..., M' - 1, we prove

$$\sum_{n=2}^{N} X_{nM'+R}/N \to 0 (N \to \infty).$$
(9)

Let $H_0 = F_0 = (\Omega, \Phi)$, $H_n = F_{M'+R}^{nM'+R}$, $n \ge 2$. Clearly $H_n \uparrow$, for fixed R, let

$$Z_n = X_{nM'+R} - E(X_{nM'+R}|H_{n-1}), n \ge 2.$$

Obviously, $\{Z_n, H_n, n \geq 2\}$ is a martingale difference. By virtue of condition expectation, we obtain $E\{(E(X_{nM'+R}|H_{n-1}))^2\}$

$$= E\{E(X_{nM'+R}|H_{n-1}) \cdot E(X_{nM'+R}|H_{n-1})\}$$

= $E\{E(X_{nM'+R} \cdot E(X_{nM'+R}|H_{n-1})|H_{n-1})\}$
= $E\{X_{nM'+R}E(X_{nM'+R}|H_{n-1})\}.$

Hence,

$$EZ_n^2 = EX_{nM'+R}^2 - 2E(X_{nM'+R}E(X_{nM'+R}|H_{n-1})) + E\{(E(X_{nM'+R}|H_{n-1}))^2\} = EX_{nM'+R}^2 - E\{(E(X_{nM'+R}|H_{n-1}))^2\} \leq EX_{nM'+R}^2,$$

it follows that

$$\sum_{n=2}^{\infty} EZ_n^2/n^2 \leq \sum_{n=2}^{\infty} EX_{nM'+R}^2/n^2$$

=
$$\sum_{n=2}^{\infty} EX_{nM'+R}^2/(nM'+R)^2(\frac{nM'+R}{n})^2$$

$$\leq 4(M')^2 \sum_{i=1}^{\infty} EX_i^2/i^2, \qquad (10)$$

since $EX_i^2 \le EY_i^2 + K^2$.

Combined with (10) and $\sum_{i=1}^{\infty} EY_i^2/i^2 < \infty$, we deduce that $\sum_{n=2}^{\infty} EZ_n^2/n^2 < \infty$.

By using condition expectation again, one concludes

$$\sum_{n=2}^{\infty} E(Z_n^2 | H_{n-1}) / n^2 < \infty.$$
(11)

From (11) and Theorem 8.1(see Chow[3]), we have

$$\sum_{n=2}^{N} Z_n / N \longrightarrow 0 \ a.s. \tag{12}$$

Since (8) implies

$$|E(X_{nM'+R}|H_{n-1})| \le 2K\varepsilon, n \ge 2,$$

hence

$$\left|\sum_{n=2}^{N} E(X_{nM'+R}|H_{n-1})\right|/N \le 2K\varepsilon.$$
(13)

Combined with (12) and (13), this yields (9). For R = 0, 1, ..., M' - 1, one has

$$(X_{2M'} + X_{3M'} + \dots + X_{NM'})/N \to 0, (N \to \infty) \ a.s.$$

$$(X_{2M'+1} + X_{3M'+1} + \dots + X_{NM'+1})/N \to 0, (N \to \infty) \ a.s$$

$$\frac{1}{N}(X_{2M'+(M'-1)} + X_{3M'+(M'-1)} + \dots + X_{NM'+(M'-1)})$$

$$\to 0, (N \to \infty) \ a.s.$$

From the above results, one has

$$\sum_{i=2M'}^{(N+1)M'-1} X_i/N \to 0, (N \to \infty) \ a.s., \tag{14}$$

which deduces (7) and completes the proof.

Theorem 2.3. ([3]) Let $\{X_n, n \ge 1\}$ be a *-mixing sequence such that $EX_n = 0, EX_n^2 < \infty, n \ge 1$. Suppose that $\sum_{n=1}^{\infty} a_n^{-2} EX_n^2 < \infty$ and $\sup_n a_n^{-1} \sum_{i=1}^n E|X_i| < \infty$, where $\{a_n\}$ is a sequence of positive constants increasing to ∞ . Then

$$a_n^{-1} \sum_{i=1}^n X_i \longrightarrow 0, a.s.$$
(15)

Proof. Given $\varepsilon > 0$, choose $n_0 \ge N$ so large that $f(n_0) < \varepsilon$.

From Lemma 2.2 we deduce that for all positive integers i and j,

$$|E(X_{in_0+j}|X_{n_0+j}, X_{2n_0+j}, ..., X_{(i-1)n_0+j})|$$

= $|E[E(X_{in_0+j}|X_1, X_2, ..., X_{(i-1)n_0+j})|$
 $|X_{n_0+j}, X_{2n_0+j}, ..., X_{(i-1)n_0+j}]|$
 $\leq f(n_0)E|X_{in_0+j}| \ a.s.$

If $n \ge n_0$, choose nonnegative integers q and r such that $0 \le r \le n_0 - 1$ and $n = qn_0 + r$. Then

$$a_n^{-1} \sum_{i=1}^n X_i = a_n^{-1} \sum_{i=1}^{n_0} X_i + a_n^{-1} \sum_{i=1}^{q-1} \sum_{i=1}^{q-1} X_{in_0+j} + a_n^{-1} \sum_{j=1}^r X_{qn_0+j}$$

$$=I_1+I_2,$$
 (16)

where $I_1 = a_n^{-1} \sum_{i=1}^{n_0} X_i, I_2 = a_n^{-1} \sum_{i=1}^{q-1} \sum_{j=1}^{q-1} X_{in_0+j} + a_n^{-1} \sum_{j=1}^r X_{qn_0+j}.$

Obviously, $I_1 \rightarrow 0, a.s.(n \rightarrow \infty), I_2$ is dominated by

$$I_{2} = \sum_{j=1}^{q-1} a_{n}^{-1} \sum_{i=1}^{q-1} |[X_{in_{0}+j} - E(X_{in_{0}+j} | X_{n_{0}+j}, X_{2n_{0}+j}, \dots, X_{(i-1)n_{0}+j})]| + \sum_{j=1}^{r} a_{n}^{-1} |X_{qn_{0}+j} - E(X_{qn_{0}+j} | X_{n_{0}+j}, X_{2n_{0}+j}, \dots, X_{(q-1)n_{0}+j})| + f(n_{0}) a_{n}^{-1} \sum_{i=n_{0}+1}^{n} E|X_{i}|.$$

Based on the fact $\sum_{n=1}^{\infty} a_n^{-2} E X_n^2 < \infty$ and Theorem 2.18([3]), we see that the first two terms here converge a.s. to zero. The second term is convergent to zero since r is fixed, and by $\sup_n a_n^{-1} \sum_{i=1}^n E|X_i| < \infty$, the last term also converges a.s. to zero. We deduce that for all $\varepsilon > 0$,

$$\limsup_{n} |b_n^{-1} \sum_{i=1}^n X_i| < \varepsilon (\sup_{n} b_n^{-1} \sum_{i=1}^n |X_i|) \quad a.s.,$$

which completes the proof.

Lemma 2.4. Let $\{X_n, n \ge 1\}$ be a sequence of *-mixing random variables satisfying $\sum_{n=1}^{\infty} f(n) < \infty, p \ge 2$. Assume that $EX_n = 0$ and $E|X_n|^p < \infty$ for each $n \ge 1$. Then there exists a constant C depending only on p and f such that

$$E\left(\max_{1 < j < n} |\sum_{i=a+1}^{a+j} X_i|^p\right) \le C\left[\sum_{i=a+1}^{a+j} E|X_i|^p + \left(\sum_{i=a+1}^{a+j} EX_i^2\right)^{p/2}\right],$$

for every $a \ge 0$ and $n \ge 1$. In particular, we have

$$E\left(\max_{1 < j < n} |\sum_{i=1}^{j} X_{i}|^{p}\right) \le C\left[\sum_{i=1}^{n} E|X_{i}|^{p} + \left(\sum_{i=1}^{n} EX_{i}^{2}\right)^{p/2}\right],$$

for every $n \ge 1$.

Proof

E

$$\begin{split} \left(\sum_{i=a+1}^{a+j} X_i\right)^2 &= \sum_{i=a+1}^{a+j} EX_i^2 + 2\sum_{a+1 \le i < j \le a+n} E(X_i X_j) \\ &\leq \sum_{i=a+1}^{a+j} EX_i^2 + 2 \cdot \\ &\sum_{a+1 \le i < j \le a+n} f(j-i)E|X_i|E|X_j| \\ &\leq \sum_{i=a+1}^{a+j} EX_i^2 + 2 \cdot \\ &\sum_{a+1 \le i < j \le a+n} f(j-i)E(X_i^2)^{1/2}E(X_j^2)^{1/2} \\ &\leq \sum_{i=a+1}^{a+j} EX_i^2 + \end{split}$$

$$\sum_{k=1}^{n-1} \sum_{i=a+1}^{a+n-k} f(k) (EX_i^2 + EX_{k+i}^2)$$

$$\leq \left(1 + 2\sum_{k=1}^{\infty} f(k)\right) \sum_{i=a+1}^{a+j} EX_i^2$$

$$= C_1 \sum_{i=a+1}^{a+j} EX_i^2$$

It is well known that *-mixing is also φ -mixing. Therefore, by [4, Lemma 2.2]) we can immediately complete the proof of Lemma 2.4.

Lemma 2.5. Let $\{X_n, n \ge 1\}$ be a zero-mean *-mixing and $\sum_{k=1}^{\infty} f(k) < \infty$, for some $p \ge 2$, $\sup_i E|X_i|^p < \infty$. Then there exists constant C > 0 depending only on p for any real-valued sequence $\{a_{ni}\}$, such that

$$E\left|\sum_{i=1}^{n} a_{ni} X_{i}\right|^{p} \le C\left(\sum_{i=1}^{n} a_{ni}^{2}\right)^{p/2}.$$

Proof. Let $a_{ni} = 0, i > n$, since $\sum_{k=1}^{\infty} f(k) < \infty$, $\sup_i E|X_i|^p < \infty$. By Lemma 2.4, we have

$$E(|\sum_{i=1}^{n} a_{ni}X_{i}|^{p} \leq C\left[\sum_{i=1}^{n} E|a_{ni}X_{i}|^{p} + \left(\sum_{i=1}^{n} Ea_{ni}X_{i}^{2}\right)^{p/2}\right]$$
$$\leq C[\sum_{i=1}^{n} |a_{ni}|^{p} + (\sum_{i=1}^{n} a_{ni}^{2})^{p/2}].$$

Since $p \ge 2$, it follows that

$$\begin{aligned} (\sum_{i=1}^{n} |a_{ni}|^{p})^{1/p} &\leq (\sum_{i=1}^{n} a_{ni}^{2})^{1/2} \\ \Leftrightarrow (\sum_{i=1}^{n} |a_{ni}|^{p}) &\leq (\sum_{i=1}^{n} a_{ni}^{2})^{p/2}, \text{ which proves the statement.} \end{aligned}$$

Remark 1.

(1) Lemma 2.5 implies that *-mixing is a Lacunary System.
(2) If a_{ni} = 1, we have

$$E(|\sum_{i=1}^{n} X_i|)^p \le cn^{p/2}.$$

III. LARGER DEVIATIONS FOR *-MIXING

Theorem 3.1. Let $\{Xn, n \ge 1\}$ be a zero-mean *-mixing, $\sum_{k=1}^{\infty} f(k) < \infty$, for some $p > 2, E|X_i|^p < \infty$. If there exists $1/2 < r \le 1, \theta = 2r - 1$ and positive constant K such that $\sum_{i=1}^{n} a_{ni}^2 \le Kn^{\theta}$, (i = 1, 2, ..., n), then

$$n^{-r} \sum_{i=1}^{n} a_{ni} X_i \longrightarrow 0, \quad a.s. \tag{17}$$

Proof. Denote $S_n = \sum_{i=1}^n a_{ni} X_i$, by Markov's inequality, we have

$$P\{S_n \ge n^r x\} \le \frac{E|S_n|^p}{x^p n^{pr}}.$$

From lemma 2.5, we obtain

$$\begin{split} \sum_{n=1}^{\infty} P\{|S_n| \geq n^r x\} &\leq \sum_{n=1}^{\infty} \frac{E|S_n|^p}{x^p n^{pr}} \\ &\leq \sum_{n=1}^{\infty} \frac{C(\sum_{i=1}^n a_{ni}^2)^{p/2}}{x^p n^{pr}} \\ &\leq \sum_{n=1}^{\infty} \frac{CK}{x^p n^{p/2}} < \infty. \end{split}$$

Inequality (17) follows from Borel-Cantelli lemma.

Remark 2. Marcinkiewicz Law of large numbers of independent and identically distributed variables has been extended to the case of *-mixing.

Theorem 3.2. Let $\{X_n, n \ge 1\}$ be a zero-mean *-mixing, $\sum_{k=1}^{\infty} f(k) < \infty$, for some $p > 2, E|X_i|^p < \infty$. If there exists $1/2 < r \le 1, \theta = 1 - 2/p$ and positive constant K such that $\sum_{i=1}^{n} a_{ni}^2 \le Kn^{\theta}, (i = 1, 2, ..., n)$, then

$$\frac{\sum_{i=1}^{n} a_{ni} X_i}{\sqrt{n \log n}} \longrightarrow 0, a.s.$$
(18)

Proof. By Markov's inequality and lemma 2.5, we obtain

$$\sum_{n=1}^{\infty} P\{ |\sum_{i=1}^{n} a_{ni} X_i / \sqrt{n \log n}| \ge x \}$$

$$\le \sum_{n=1}^{\infty} \frac{E|S_n|^p}{x^{p_n p/2} (\log n)^{p/2}}$$

$$\le \sum_{n=1}^{\infty} \frac{C(\sum_{i=1}^{n} a_{ni}^2)^{p/2}}{x^{p_n p/2} (\log n)^{p/2}}$$

$$\le \sum_{n=1}^{\infty} \frac{CK n^{p/2-1}}{x^{p_n p/2} (\log n)^{p/2}}$$

$$= \sum_{n=1}^{\infty} \frac{CK}{x^{p_n n} (\log n)^{p/2}}$$

 $<\infty$.

Therefore, inequality (18) follows from Borel-Cantelli lemma.

ACKNOWLEDGMENT

This work was supported by the Science Foundation of Anhui Province (KJ2010B001) and (2010sk226).

REFERENCES

- J. R. Blum, D. L. Hanson, L. H. Koopmans, On the Strong Law of Large Numbers for a Class of Stochastic Processes, Z. Wahrscheinlichkeitstheorie.Verwandte Geb. 2(1963)1-11.
- [2] W. F. Stout, Almost sure convergence, Academic Press. New York, 1974.
 [3] P. Hall, C. C. Heyde, Martingale Limit Theory and its Application,
- [5] F. Hall, C. C. Heyde, Martingale Limit Theory and its Application, Academic Press, New York, 1980.
- [4] Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables, Stochastic Process. Appl. 48 (1993) 319-334.