Search results for: Image mining
1959 Digital Image Forensics: Discovering the History of Digital Images
Authors: Gurinder Singh, Kulbir Singh
Abstract:
Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.
Keywords: Computer forensics, multimedia forensics, image ballistics, camera source identification, forgery detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18271958 Gray Level Image Encryption
Authors: Roza Afarin, Saeed Mozaffari
Abstract:
The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.
Keywords: Correlation coefficients, Genetic algorithm, Image encryption, Image entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22401957 Improving Image Quality in Remote Sensing Satellites using Channel Coding
Authors: H. M. Behairy, M. S. Khorsheed
Abstract:
Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.Keywords: Image Transmission, Image Compression, Channel Coding, Error-Control Coding, DCT, Convolution Codes, Viterbi Algorithm, PCGC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18591956 The Robust Clustering with Reduction Dimension
Authors: Dyah E. Herwindiati
Abstract:
A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paperKeywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001955 Efficient Web Usage Mining Based on K-Medoids Clustering Technique
Authors: P. Sengottuvelan, T. Gopalakrishnan
Abstract:
Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13991954 Calculus Logarithmic Function for Image Encryption
Authors: Adil AL-Rammahi
Abstract:
When we prefer to make the data secure from various attacks and fore integrity of data, we must encrypt the data before it is transmitted or stored. This paper introduces a new effective and lossless image encryption algorithm using a natural logarithmic function. The new algorithm encrypts an image through a three stage process. In the first stage, a reference natural logarithmic function is generated as the foundation for the encryption image. The image numeral matrix is then analyzed to five integer numbers, and then the numbers’ positions are transformed to matrices. The advantages of this method is useful for efficiently encrypting a variety of digital images, such as binary images, gray images, and RGB images without any quality loss. The principles of the presented scheme could be applied to provide complexity and then security for a variety of data systems such as image and others.
Keywords: Linear Systems, Image Encryption, Calculus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24031953 Better Perception of Low Resolution Images Using Wavelet Interpolation Techniques
Authors: Tarun Gulati, Kapil Gupta, Dushyant Gupta
Abstract:
High resolution images are always desired as they contain the more information and they can better represent the original data. So, to convert the low resolution image into high resolution interpolation is done. The quality of such high resolution image depends on the interpolation function and is assessed in terms of sharpness of image. This paper focuses on Wavelet based Interpolation Techniques in which an input image is divided into subbands. Each subband is processed separately and finally combined the processed subbandsto get the super resolution image.
Keywords: SWT, DWTSR, DWTSWT, DWCWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21731952 Block-Based 2D to 3D Image Conversion Method
Authors: S. Sowmyayani, V. Murugan
Abstract:
With the advent of three-dimension (3D) technology, there are lots of research in converting 2D images to 3D images. The main difference between 2D and 3D is the visual illusion of depth in 3D images. In the recent era, there are more depth estimation techniques. The objective of this paper is to convert 2D images to 3D images with less computation time. For this, the input image is divided into blocks from which the depth information is obtained. Having the depth information, a depth map is generated. Then the 3D image is warped using the original image and the depth map. The proposed method is tested on Make3D dataset and NYU-V2 dataset. The experimental results are compared with other recent methods. The proposed method proved to work with less computation time and good accuracy.
Keywords: Depth map, 3D image warping, image rendering, bilateral filter, minimum spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641951 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography
Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway
Abstract:
This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.
Keywords: Steganography, stego, LSB, crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581950 A Dual Digital-Image Watermarking Technique
Authors: Maha Sharkas, Dahlia ElShafie, Nadder Hamdy
Abstract:
Image watermarking has become an important tool for intellectual property protection and authentication. In this paper a watermarking technique is suggested that incorporates two watermarks in a host image for improved protection and robustness. A watermark, in form of a PN sequence (will be called the secondary watermark), is embedded in the wavelet domain of a primary watermark before being embedded in the host image. The technique has been tested using Lena image as a host and the camera man as the primary watermark. The embedded PN sequence was detectable through correlation among other five sequences where a PSNR of 44.1065 dB was measured. Furthermore, to test the robustness of the technique, the watermarked image was exposed to four types of attacks, namely compression, low pass filtering, salt and pepper noise and luminance change. In all cases the secondary watermark was easy to detect even when the primary one is severely distorted.Keywords: DWT, Image watermarking, watermarkingtechniques, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27141949 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining
Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri
Abstract:
This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.
Keywords: Motivation behavior, e-learning, moodle log, association rule mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911948 Evaluation of Wavelet Filters for Image Compression
Authors: G. Sadashivappa, K. V. S. AnandaBabu
Abstract:
The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22281947 Data Embedding Based on Better Use of Bits in Image Pixels
Authors: Rehab H. Alwan, Fadhil J. Kadhim, Ahmad T. Al-Taani
Abstract:
In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.
Keywords: Image embedding, Edge detection, gray level connectivity, information hiding, digital image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21511946 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28551945 Improvement of Blood Detection Accuracy using Image Processing Techniques suitable for Capsule Endoscopy
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Bleeding in the digestive duct is an important diagnostic parameter for patients. Blood in the endoscopic image can be determined by investigating the color tone of blood due to the degree of oxygenation, under- or over- illumination, food debris and secretions, etc. However, we found that how to pre-process raw images obtained from the capsule detectors was very important. We applied various image process methods suitable for the capsule endoscopic image in order to remove noises and unbalanced sensitivities for the image pixels. The results showed that much improvement was achieved by additional pre-processing techniques on the algorithm of determining bleeding areas.
Keywords: blood detection, capsule endoscopy, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981944 Blind Image Deconvolution by Neural Recursive Function Approximation
Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu
Abstract:
This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.
Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651943 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking
Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine
Abstract:
In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.Keywords: Color image, grayscale image, singular values decomposition, lifting wavelet transform, image watermarking, watermark, secure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10301942 Secure E-Pay System Using Steganography and Visual Cryptography
Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi
Abstract:
Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.
Keywords: Image security, random LSB, steganography, visual cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891941 Definition, Structure and Core Functions of the State Image
Authors: Rosa Nurtazina, Yerkebulan Zhumashov, Maral Tomanova
Abstract:
Humanity is entering an era when "virtual reality" as the image of the world created by the media with the help of the Internet does not match the reality in many respects, when new communication technologies create a fundamentally different and previously unknown "global space". According to these technologies, the state begins to change the basic technology of political communication of the state and society, the state and the state. Nowadays image of the state becomes the most important tool and technology.
Image is a purposefully created image granting political object (person, organization, country, etc.) certain social and political values and promoting more emotional perception.
Political image of the state plays an important role in international relations. The success of the country's foreign policy, development of trade and economic relations with other countries depends on whether it is positive or negative. Foreign policy image has an impact on political processes taking place in the state: the negative image of the country's can be used by opposition forces as one of the arguments to criticize the government and its policies.
Keywords: Image of the country, country's image classification, function of the country image, country's image components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37551940 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece
Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos
Abstract:
The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.
Keywords: Greece, heavy metals, mining, pollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5871939 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.
Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531938 Detecting Circles in Image Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: Image processing, median filter, projection, scalespace, segmentation, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381937 Distributed Data-Mining by Probability-Based Patterns
Authors: M. Kargar, F. Gharbalchi
Abstract:
In this paper a new method is suggested for distributed data-mining by the probability patterns. These patterns use decision trees and decision graphs. The patterns are cared to be valid, novel, useful, and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. By using the suggested method we will be able to extract the useful information from massive and multi-relational data bases.Keywords: Data-mining, Decision tree, Decision graph, Pattern, Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591936 A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform
Authors: Shimal Das, Dibyendu Ghoshal
Abstract:
Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.
Keywords: Fractal coding, Discrete Cosine Transform, Iterated Function System (IFS), Affine Transformation, Run length encoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15741935 Quantification of GHGs Emissions from Electricity and Diesel Fuel Consumption in Basalt Mining Industry in Thailand
Authors: S. Kittipongvises, A. Dubsok
Abstract:
The mineral and mining industry is necessary for countries to have an adequate and reliable supply of materials to meet their socio-economic development. Despite its importance, the environmental impacts from mineral exploration are hugely significant. This study aimed to investigate and quantify the amount of GHGs emissions emitted from both electricity and diesel vehicle fuel consumption in basalt mining in Thailand. Plant A, located in the northeastern region of Thailand, was selected as a case study. Results indicated that total GHGs emissions from basalt mining and operation (Plant A) were approximately 2,501,086 kgCO2e and 1,997,412 kgCO2e in 2014 and 2015, respectively. The estimated carbon intensity ranged between 1.824 kgCO2e to 2.284 kgCO2e per ton of rock product. Scope 1 (direct emissions) was the dominant driver of its total GHGs compared to scope 2 (indirect emissions). As such, transport related combustion of diesel fuels generated the highest GHGs emission (65%) compared to emissions from purchased electricity (35%). Some of the potential implications for mining entities were also presented.
Keywords: Basalt mining, diesel fuel, electricity, GHGs emissions, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581934 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs
Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas
Abstract:
In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).
Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31261933 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5911932 Signed Approach for Mining Web Content Outliers
Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi, G.V.Uma
Abstract:
The emergence of the Internet has brewed the revolution of information storage and retrieval. As most of the data in the web is unstructured, and contains a mix of text, video, audio etc, there is a need to mine information to cater to the specific needs of the users without loss of important hidden information. Thus developing user friendly and automated tools for providing relevant information quickly becomes a major challenge in web mining research. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent ones that are likely to contain outlying data such as noise, irrelevant and redundant data. This paper mainly focuses on Signed approach and full word matching on the organized domain dictionary for mining web content outliers. This Signed approach gives the relevant web documents as well as outlying web documents. As the dictionary is organized based on the number of characters in a word, searching and retrieval of documents takes less time and less space.Keywords: Outliers, Relevant document, , Signed Approach, Web content mining, Web documents..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23501931 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30271930 Mining Frequent Patterns with Functional Programming
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.Keywords: Association, frequent pattern mining, functionalprogramming, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138