Search results for: Genetic Programming.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1287

Search results for: Genetic Programming.

1167 Object Localization in Medical Images Using Genetic Algorithms

Authors: George Karkavitsas, Maria Rangoussi

Abstract:

We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.

Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1166 Genetic Algorithm Approach for Solving the Falkner–Skan Equation

Authors: Indu Saini, Phool Singh, Vikas Malik

Abstract:

A novel method based on Genetic Algorithm to solve the boundary value problems (BVPs) of the Falkner–Skan equation over a semi-infinite interval has been presented. In our approach, we use the free boundary formulation to truncate the semi-infinite interval into a finite one. Then we use the shooting method based on Genetic Algorithm to transform the BVP into initial value problems (IVPs). Genetic Algorithm is used to calculate shooting angle. The initial value problems arisen during shooting are computed by Runge-Kutta Fehlberg method. The numerical solutions obtained by the present method are in agreement with those obtained by previous authors.

Keywords: Boundary Layer Flow, Falkner–Skan equation, Genetic Algorithm, Shooting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
1165 Comparative Survey of Object Serialization Techniques and the Programming Supports

Authors: Kazuaki Maeda

Abstract:

This paper compares six approaches of object serialization from qualitative and quantitative aspects. Those are object serialization in Java, IDL, XStream, Protocol Buffers, Apache Avro, and MessagePack. Using each approach, a common example is serialized to a file and the size of the file is measured. The qualitative comparison works are investigated in the way of checking whether schema definition is required or not, whether schema compiler is required or not, whether serialization is based on ascii or binary, and which programming languages are supported. It is clear that there is no best solution. Each solution makes good in the context it was developed.

Keywords: structured data, serialization, programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
1164 An Analysis of Genetic Algorithm Based Test Data Compression Using Modified PRL Coding

Authors: K. S. Neelukumari, K. B. Jayanthi

Abstract:

In this paper genetic based test data compression is targeted for improving the compression ratio and for reducing the computation time. The genetic algorithm is based on extended pattern run-length coding. The test set contains a large number of X value that can be effectively exploited to improve the test data compression. In this coding method, a reference pattern is set and its compatibility is checked. For this process, a genetic algorithm is proposed to reduce the computation time of encoding algorithm. This coding technique encodes the 2n compatible pattern or the inversely compatible pattern into a single test data segment or multiple test data segment. The experimental result shows that the compression ratio and computation time is reduced.

Keywords: Backtracking, test data compression (TDC), x-filling, x-propagating and genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
1163 Reducing Cognitive Load in Learning Computer Programming

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Many difficulties are faced in the process of learning computer programming. This paper will propose a system framework intended to reduce cognitive load in learning programming. In first section focus is given on the process of learning and the shortcomings of the current approaches to learning programming. Finally the proposed prototype is suggested along with the justification of the prototype. In the proposed prototype the concept map is used as visualization metaphor. Concept maps are similar to the mental schema in long term memory and hence it can reduce cognitive load well. In addition other method such as part code method is also proposed in this framework to can reduce cognitive load.

Keywords: Cognitive load, concept maps, working memory, split attention effect, partial code programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
1162 Load Balancing in Genetic Zone Routing Protocol for MANETs

Authors: P. Sateesh Kumar , S. Ramachandram

Abstract:

Genetic Zone Routing Protocol (GZRP) is a new hybrid routing protocol for MANETs which is an extension of ZRP by using Genetic Algorithm (GA). GZRP uses GA on IERP and BRP parts of ZRP to provide a limited set of alternative routes to the destination in order to load balance the network and robustness during node/link failure during the route discovery process. GZRP is studied for its performance compared to ZRP in many folds like scalability for packet delivery and proved with improved results. This paper presents the results of the effect of load balancing on GZRP. The results show that GZRP outperforms ZRP while balancing the load.

Keywords: MANET, routing, ZRP, Genetic algorithm, GZRP, load balancing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
1161 Feature-Based Machining using Macro

Authors: M. Razak, A. Jusoh, A. Zakaria

Abstract:

This paper presents an on-going research work on the implementation of feature-based machining via macro programming. Repetitive machining features such as holes, slots, pockets etc can readily be encapsulated in macros. Each macro consists of methods on how to machine the shape as defined by the feature. The macro programming technique comprises of a main program and subprograms. The main program allows user to select several subprograms that contain features and define their important parameters. With macros, complex machining routines can be implemented easily and no post processor is required. A case study on machining of a part that comprised of planar face, hole and pocket features using the macro programming technique was carried out. It is envisaged that the macro programming technique can be extended to other feature-based machining fields such as the newly developed STEP-NC domain.

Keywords: Feature-based machining, CNC, Macro, STEP-NC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
1160 Selecting Stealth Aircraft Using Determinate Fuzzy Preference Programming in Multiple Criteria Decision Making

Authors: C. Ardil

Abstract:

This paper investigates the application of the determinate fuzzy preference programming method for a more nuanced and comprehensive evaluation of stealth aircraft. Traditional methods often struggle to incorporate subjective factors and uncertainties inherent in complex systems like stealth aircraft. Determinate fuzzy preference programming addresses this limitation by leveraging the strengths of determinate fuzzy sets. The proposed novel multiple criteria decision-making algorithm integrates these concepts to consider aspects and criteria influencing aircraft performance. This approach aims to provide a more holistic assessment by enabling decision-makers to observe positive and negative outranking flows simultaneously. By demonstrating the validity and effectiveness of this approach through a practical example of selecting a stealth aircraft, this paper aims to establish the determinate fuzzy preference programming method as a valuable tool for informed decision-making in this critical domain.

Keywords: Determinate fuzzy set, stealth aircraft selection, distance function, decision making, uncertainty, preference programming. MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145
1159 Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT

Authors: V. Joshi Manohar, P. Sujatha, K. S. R. Anjaneyulu

Abstract:

Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.

Keywords: Cascade H-Bridge Inverter (CHB), Continuous Genetic Algorithm (C-GA), Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Total Harmonic Distortion (%THDv), Wavelet Transform (WT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916
1158 Rule-Based Message Passing for Collaborative Application in Distributed Environments

Authors: Wataru Yamazaki, Hironori Hiraishi, Fumio Mizoguchi

Abstract:

In this paper, we describe a rule-based message passing method to support developing collaborative applications, in which multiple users share resources in distributed environments. Message communications of applications in collaborative environments tend to be very complex because of the necessity to manage context situations such as sharing events, access controlling of users, and network places. In this paper, we propose a message communications method based on unification of artificial intelligence and logic programming for defining rules of such context information in a procedural object-oriented programming language. We also present an implementation of the method as java classes.

Keywords: agent programming, logic programming, multi-media application, collaborative application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
1157 Cluster Algorithm for Genetic Diversity

Authors: Manpreet Singh, Keerat Kaur, Bhavdeep Singh

Abstract:

With the hardware technology advancing, the cost of storing is decreasing. Thus there is an urgent need for new techniques and tools that can intelligently and automatically assist us in transferring this data into useful knowledge. Different techniques of data mining are developed which are helpful for handling these large size databases [7]. Data mining is also finding its role in the field of biotechnology. Pedigree means the associated ancestry of a crop variety. Genetic diversity is the variation in the genetic composition of individuals within or among species. Genetic diversity depends upon the pedigree information of the varieties. Parents at lower hierarchic levels have more weightage for predicting genetic diversity as compared to the upper hierarchic levels. The weightage decreases as the level increases. For crossbreeding, the two varieties should be more and more genetically diverse so as to incorporate the useful characters of the two varieties in the newly developed variety. This paper discusses the searching and analyzing of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the genetic diversity between the selected wheat varieties. Cluster analysis technique is used for retrieving the results.

Keywords: Genetic diversity, pedigree, nutrients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
1156 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost

Authors: L. Abdelmalek, M. Zerikat, M. Rahli

Abstract:

In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.

Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1155 Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

Authors: Navid Mehdizadeh Afroozi, Khodakhast Isapour, Mojtaba Hakimzadeh, Abdolmohammad Davodi

Abstract:

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Keywords: Economic Dispatch (ED), Ant Colony Optimization, Fuel Cost, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
1154 A Genetic Algorithm for Clustering on Image Data

Authors: Qin Ding, Jim Gasvoda

Abstract:

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

Keywords: Clustering, data mining, genetic algorithm, image data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1153 Supplementary JAVA Programming Course for e-Learning with Small-Group Instruction

Authors: Eiko Takaoka, Yuji Osawa

Abstract:

We have designed and implemented e-Learning materials for a JAVA programming course since 2004 and have found that “normal” students, meaning motivated and capable students, can successfully learn the course material taught in a fully online manner. However, for “weaker” students, meaning those lacking motivation, experience, and/or aptitude, the results have been unsatisfactory, and such students thus fall into the supplementary category. From 2007 to 2008, we offered a face-to-face class with small-group instruction for the weaker students, while we provided the fully online course for the normal students. Consequently, we succeeded in helping the weaker students to overcome their programming phobia and develop the ability to create basic programs.

Keywords: e-learning, JAVA Programming Course, Small-Group Instruction, Supplementary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1152 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System

Authors: Manisha Dubey, Aalok Dubey

Abstract:

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.

Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
1151 Generic Model for Timetabling Problems by Integer Linear Programming Approach

Authors: N. A. H. Aizam, V. Uvaraja

Abstract:

The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It is widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming models to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describes about creating a general model which solves different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.

Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3033
1150 Graphical Programming of Programmable Logic Controllers -Case Study for a Punching Machine-

Authors: Vasile Marinescu, Ionut Clementin Constantin, Alexandru Epureanu, Virgil Teodor

Abstract:

The Programmable Logic Controller (PLC) plays a vital role in automation and process control. Grafcet is used for representing the control logic, and traditional programming languages are used for describing the pure algorithms. Grafcet is used for dividing the process to be automated in elementary sequences that can be easily implemented. Each sequence represent a step that has associated actions programmed using textual or graphical languages after case. The programming task is simplified by using a set of subroutines that are used in several steps. The paper presents an example of implementation for a punching machine for sheets and plates. The use the graphical languages the programming of a complex sequential process is a necessary solution. The state of Grafcet can be used for debugging and malfunction determination. The use of the method combined with a set of knowledge acquisition for process application reduces the downtime of the machine and improve the productivity.

Keywords: Grafcet, Petrinet, PLC, punching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1149 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.

Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1148 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities

Authors: J. Kaabi, Y. Harrath

Abstract:

This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm. 

Keywords: Flow shop scheduling, maintenance, genetic algorithm, priority rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1147 Modeling Approaches for Large-Scale Reconfigurable Engineering Systems

Authors: Kwa-Sur Tam

Abstract:

This paper reviews various approaches that have been used for the modeling and simulation of large-scale engineering systems and determines their appropriateness in the development of a RICS modeling and simulation tool. Bond graphs, linear graphs, block diagrams, differential and difference equations, modeling languages, cellular automata and agents are reviewed. This tool should be based on linear graph representation and supports symbolic programming, functional programming, the development of noncausal models and the incorporation of decentralized approaches.

Keywords: Interdisciplinary, dynamic, functional programming, object-oriented.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1146 Application of 0-1 Fuzzy Programming in Optimum Project Selection

Authors: S. Sadi-Nezhad, K. Khalili Damghani, N. Pilevari

Abstract:

In this article, a mathematical programming model for choosing an optimum portfolio of investments is developed. The investments are considered as investment projects. The uncertainties of the real world are associated through fuzzy concepts for coefficients of the proposed model (i. e. initial investment costs, profits, resource requirement, and total available budget). Model has been coded by using LINGO 11.0 solver. The results of a full analysis of optimistic and pessimistic derivative models are promising for selecting an optimum portfolio of projects in presence of uncertainty.

Keywords: Fuzzy Programming, Fuzzy Knapsack, FuzzyCapital Budgeting, Fuzzy Project Selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
1145 Vector Space of the Extended Base-triplets over the Galois Field of five DNA Bases Alphabet

Authors: Robersy Sánchez, Ricardo Grau

Abstract:

A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D, G, A, U, C}, where the letter D represent one or more hypothetical bases with unspecific pairing. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvements of a primitive DNA repair system could make possible the transition from the ancient to the modern genetic code. Our results suggest that the Watson-Crick base pairing and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as the transition from the former to the later. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences.

Keywords: Genetic code vector space, primeval genetic code, power spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
1144 Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming

Authors: Michael Todinov, Eberechi Weli

Abstract:

The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expressed as integer number), the worst-case running time of the proposed algorithm is O (n x (B+1)), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry. 

Keywords: Optimisation, railway risk reduction, budget constraints, dynamic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1143 A Bi-Objective Model for Location-Allocation Problem within Queuing Framework

Authors: Amirhossein Chambari, Seyed Habib Rahmaty, Vahid Hajipour, Aida Karimi

Abstract:

This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.

Keywords: Queuing, Location, Bi-objective, NSGA-II, NRGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
1142 Evolutionary Approach for Automated Discovery of Censored Production Rules

Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh

Abstract:

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1141 Image Similarity: A Genetic Algorithm Based Approach

Authors: R. C. Joshi, Shashikala Tapaswi

Abstract:

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
1140 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.

Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
1139 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: Genetic algorithm, similarity and dissimilarity, chromosome injection, dynamic schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
1138 An Architectural Model of Multi-Agent Systems for Student Evaluation in Collaborative Game Software

Authors: Monica Hoedltke Pietruchinski, Andrey Ricardo Pimentel

Abstract:

The teaching of computer programming for beginners has been generally considered as a difficult and challenging task. Several methodologies and research tools have been developed, however, the difficulty of teaching still remains. Our work integrates the state of the art in teaching programming with game software and further provides metrics for the evaluation of student performance in a collaborative activity of playing games. This paper aims to present a multi-agent system architecture to be incorporated to the educational collaborative game software for teaching programming that monitors, evaluates and encourages collaboration by the participants. A literature review has been made on the concepts of Collaborative Learning, Multi-agents systems, collaborative games and techniques to teach programming using these concepts simultaneously.

Keywords: Architecture of multi-agent systems, collaborative evaluation, collaboration assessment, gamifying educational software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982