Search results for: Component Based SoftwareEngineering
11737 Integrated Reasoning Approach for Car Faulty Diagnosis
Authors: Diana M.L. Wong
Abstract:
This paper presents an integrated case based and rule based reasoning method for car faulty diagnosis. The reasoning method is done through extracting the past cases from the Proton Service Center while comparing with the preset rules to deduce a diagnosis/solution to a car service case. New cases will be stored to the knowledge base. The test cases examples illustrate the effectiveness of the proposed integrated reasoning. It has proven accuracy of similar reasoning if carried out by a service advisor from the service center.Keywords: component; case based reasoning (CBR), rule basedreasoning (RBR), decision support systems, diagnosis tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192611736 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 262311735 Multilevel Activation Functions For True Color Image Segmentation Using a Self Supervised Parallel Self Organizing Neural Network (PSONN) Architecture: A Comparative Study
Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi
Abstract:
The paper describes a self supervised parallel self organizing neural network (PSONN) architecture for true color image segmentation. The proposed architecture is a parallel extension of the standard single self organizing neural network architecture (SONN) and comprises an input (source) layer of image information, three single self organizing neural network architectures for segmentation of the different primary color components in a color image scene and one final output (sink) layer for fusion of the segmented color component images. Responses to the different shades of color components are induced in each of the three single network architectures (meant for component level processing) by applying a multilevel version of the characteristic activation function, which maps the input color information into different shades of color components, thereby yielding a processed component color image segmented on the basis of the different shades of component colors. The number of target classes in the segmented image corresponds to the number of levels in the multilevel activation function. Since the multilevel version of the activation function exhibits several subnormal responses to the input color image scene information, the system errors of the three component network architectures are computed from some subnormal linear index of fuzziness of the component color image scenes at the individual level. Several multilevel activation functions are employed for segmentation of the input color image scene using the proposed network architecture. Results of the application of the multilevel activation functions to the PSONN architecture are reported on three real life true color images. The results are substantiated empirically with the correlation coefficients between the segmented images and the original images.
Keywords: Colour image segmentation, fuzzy set theory, multi-level activation functions, parallel self-organizing neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202211734 The Effect of the Tool Geometry and Cutting Conditions on the Tool Deflection and Cutting Forces
Abstract:
In this paper by measuring the cutting forces the effect of the tool shape and qualifications (sharp and worn cutting tools of both vee and knife edge profile) and cutting conditions (depth of cut and cutting speed) in the turning operation on the tool deflection and cutting force is investigated. The workpiece material was mild steel and the cutting tool was made of high speed steel. Cutting forces were measured by a dynamometer (type P.E.I. serial No 154). The dynamometer essentially consisted of a cantilever structure which held the cutting tool. Deflection of the cantilever was measured by an L.V.D.T (Mercer 122) deflection indicator. No cutting fluid was used during the turning operations. A modern CNC lathe machine (Okuma LH35-N) was used for the tests. It was noted that worn vee profile tools tended to produce a greater increase in the vertical force component than the axial component, whereas knife tools tended to show a more pronounced increase in the axial component.Keywords: Cutting force, Tool deflection, Turning, Cuttingconditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 335211733 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109811732 A Security Module for Car Appliances
Authors: Pang-Chieh Wang, Ting-Wei Hou, Jung-Hsuan Wu, Bo-Chiuan Chen
Abstract:
In this paper we discuss on the security module for the car appliances to prevent stealing and illegal use on other cars. We proposed an open structure including authentication and encryption by embed a security module in each to protect car appliances. Illegal moving and use a car appliance with the security module without permission will lead the appliance to useless. This paper also presents the component identification and deal with relevant procedures. It is at low cost to recover from destroys by the burglar. Expect this paper to offer the new business opportunity to the automotive and technology industry.Keywords: Automotive, component identification, electronic immobilizer, key management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184311731 Wood Ashes from Electrostatic Filter as a Replacement for the Fly Ashes in Concrete
Authors: Piotr-Robert Lazik, Harald Garrecht
Abstract:
Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO2 in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete.Keywords: Wood ashes, fly ashes, electric filter, replacement, concrete technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60911730 Multivariate Statistical Analysis of Decathlon Performance Results in Olympic Athletes (1988-2008)
Authors: Jaebum Park, Vladimir M. Zatsiorsky
Abstract:
The performance results of the athletes competed in the 1988-2008 Olympic Games were analyzed (n = 166). The data were obtained from the IAAF official protocols. In the principal component analysis, the first three principal components explained 70% of the total variance. In the 1st principal component (with 43.1% of total variance explained) the largest factor loadings were for 100m (0.89), 400m (0.81), 110m hurdle run (0.76), and long jump (–0.72). This factor can be interpreted as the 'sprinting performance'. The loadings on the 2nd factor (15.3% of the total variance) presented a counter-intuitive throwing-jumping combination: the highest loadings were for throwing events (javelin throwing 0.76; shot put 0.74; and discus throwing 0.73) and also for jumping events (high jump 0.62; pole vaulting 0.58). On the 3rd factor (11.6% of total variance), the largest loading was for 1500 m running (0.88); all other loadings were below 0.4.Keywords: Decathlon, principal component analysis, Olympic Games, multivariate statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281111729 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.
Keywords: Availability, design for maintenance, DFM, dynamic maintenance, life cycle cost, LCC, maintenance free operating period, MFOP, simultaneous optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59711728 Laser Beam Forming of 3 mm Steel Plate and the Evolving Properties
Authors: Stephen Akinlabi, Mukul Shukla, Esther Akinlabi, Marwala Tshilidzi
Abstract:
This paper reports the evolving properties of a 3 mm low carbon steel plate after Laser Beam Forming achieve this objective, the chemical analyse material and the formed components were carried thereafter both were characterized through microhardness profiling microstructural evaluation and tensile testing. showed an increase in the elemental concentration of the component when compared to the as received attributed to the enhancement property of the LBF process Ultimate Tensile Strength (UTS) and the Vickers the formed component shows an increase when compared to the as received material, this was attributed to strain hardening and grain refinement brought about by the LBF process. The microstructure of the as received steel consists of equiaxed ferrit that of the formed component exhibits elongated orming process (LBF). To es of the as received out and compared; profiling, The chemical analyses formed material; this can be process. The microhardness of ferrite and pearlite while grains.
Keywords: Laser beam forming, deformation , deformation, elongated grains
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189311727 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics
Authors: S. Aouabdi, M. Taibi
Abstract:
This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).Keywords: Ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivariate statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214811726 Mathematical Modeling of Non-Isothermal Multi-Component Fluid Flow in Pipes Applying to Rapid Gas Decompression in Rich and Base Gases
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a one-dimensional transient mathematical model of compressible non-isothermal multicomponent fluid mixture flow in a pipe. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales- Eakin (LGE) correlation. Numerical analysis of rapid gas decompression process in rich and base natural gases is made on the basis of the proposed mathematical model. The model is successfully validated on the experimental data [1]. The proposed mathematical model shows a very good agreement with the experimental data [1] in a wide range of pressure values and predicts the decompression in rich and base gas mixtures much better than analytical and mathematical models, which are available from the open source literature.Keywords: Mathematical model, Multi-Component gas mixture flow, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195211725 Pattern Recognition Based Prosthesis Control for Movement of Forearms Using Surface and Intramuscular EMG Signals
Authors: Anjana Goen, D. C. Tiwari
Abstract:
Myoelectric control system is the fundamental component of modern prostheses, which uses the myoelectric signals from an individual’s muscles to control the prosthesis movements. The surface electromyogram signal (sEMG) being noninvasive has been used as an input to prostheses controllers for many years. Recent technological advances has led to the development of implantable myoelectric sensors which enable the internal myoelectric signal (MES) to be used as input to these prostheses controllers. The intramuscular measurement can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk thus allowing for more independent control sites. However, little work has been done to compare the two inputs. In this paper we have compared the classification accuracy of six pattern recognition based myoelectric controllers which use surface myoelectric signals recorded using untargeted (symmetric) surface electrode arrays to the same controllers with multichannel intramuscular myolectric signals from targeted intramuscular electrodes as inputs. There was no significant enhancement in the classification accuracy as a result of using the intramuscular EMG measurement technique when compared to the results acquired using the surface EMG measurement technique. Impressive classification accuracy (99%) could be achieved by optimally selecting only five channels of surface EMG.
Keywords: Discriminant Locality Preserving Projections (DLPP), myoelectric signal (MES), Sparse Principal Component Analysis (SPCA), Time Frequency Representations (TFRs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140611724 Gender Component in the National Project of Kazakhstan
Authors: D.Nuketaeva, A.Kanagatova, I.Khan, B.Kylyshbayeva, G.Bektenova
Abstract:
This article describes the aspects of the formation of the national idea and national identity through the prism of gender control and its contradistinction to the obsolete, Soviet component. The role of females in ethnic and national projects is considered from the point of view of Dr. Nira Yuval-Davis: as biological reproducers of the ethnic communities- members; as reproducers of the boarders of ethnic/national groups; as central participants in the ideological reproduction of community and transducers of its culture; as symbols in ideology, reproduction and transformation of ethnic/national categories; and as participants of national, economical, political and military combats. The society of the transitional type uses the symbolic resources of the formation of gender component in the national project. The gender patterns act like cultural codes, executing the important ideological function in formation of the national female- image, i.e. the discussion on hijab - it-s not just the discussion on control over the female body, it-s the discussion on the metaphor of social order.Keywords: nation, gender, hijab, Islam, ideology, politics, national idea, national identity, society of the transitional type
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202411723 The Implicit Methods for the Study of Tolerance
Authors: M. Bambulyakа
Abstract:
Tolerance is a tool for achieving a social cohesion, particularly, among individuals and groups with different values. The aim is to study the characteristics of the ethnic tolerance, the inhabitants of Latvia. The ethnic tolerance is taught as a set of conscious and unconscious orientations of the individual in social interaction and inter-ethnic communication. It uses the tools of empirical studies of the ethnic tolerance which allows to identify the explicitly and implicitly levels of the emotional component of Latvia's residents. Explicit measurements were made using the techniques of self-report which revealed the index of the ethnic tolerance and the ethnic identity of the participants. The implicit component was studied using methods based on the effect of the emotional priming. During the processing of the results, there were calculated indicators of the positive and negative implicit attitudes towards members of their own and other ethnicity as well as the explicit parameters of the ethnic tolerance and the ethnic identity of Latvia-s residents. The implicit measurements of the ratio of neighboring ethnic groups against each other showed a mutual negative attitude whereas the explicit measurements indicate a neutral attitude. The data obtained contribute to a further study of the ethnic tolerance of Latvia's residents.
Keywords: ethnic tolerance, implicit measure, priming, ethnic attitudes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159111722 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.
Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106111721 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application
Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil
Abstract:
In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.
Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211411720 Evaluating Health-Related Quality of Life of Lost to Follow-Up Tuberculosis Patients in Yemen
Authors: Ammar Ali Saleh Jaber, Amer Hayat Khan, Syed Azhar Syed Sulaiman
Abstract:
Tuberculosis (TB) is considered as a major disease that affects daily activities and impairs health-related quality of life (HRQoL). The impact of TB on HRQoL can affect treatment outcome and may lead to treatment defaulting. Therefore, this study aims to evaluate the HRQoL of TB treatment lost to follow-up during and after treatment in Yemen. For this aim, this prospective study enrolled a total of 399 TB lost to follow-up patients between January 2011 and December 2015. By applying HRQoL criteria, only 136 fill the survey during treatment. Moreover, 96 were traced and fill out the HRQoL survey. All eight HRQol domains were categorized into the physical component score (PCS) and mental component score (MCS), which were calculated using QM scoring software. Results show that all lost to follow-up TB patients reported a score less than 47 for all eight domains, except general health (67.3) during their treatment period. Low scores of 27.9 and 29.8 were reported for emotional role limitation (RE) and mental health (MH), respectively. Moreover, the mental component score (MCS) was found to be only 28.9. The trace lost follow-up shows a significant improvement in all eight domains and a mental component score of 43.1. The low scores of 27.9 and 29.8 for role emotion and mental health, respectively, in addition to the MCS score of 28.9, show that severe emotional condition and reflect the higher depression during treatment period that can result to lost to follow-up. The low MH, RE, and MCS can be used as a clue for predicting future TB treatment lost to follow-up.Keywords: Yemen, tuberculosis, health-related quality of life, khat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88611719 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs
Authors: Kyogun Chang, Yoon Bok Lee
Abstract:
Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171111718 Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study
Authors: Nasir Yusoff, Ahmad Adamu Adamu, Tahamina Begum, Faruque Reza
Abstract:
The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task.
Keywords: Amplitude, Event Related Potential, P300 Component, Latency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146311717 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis
Authors: A.K. Tangirala, S. Babji
Abstract:
In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153411716 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network
Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss
Abstract:
The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188911715 Effects of Salinity and Drought Levels in Seed Germination of Five Crop Species
Authors: Ahmad Gholami, Saeed Sharafi, Hamid Abbasdokht
Abstract:
The heterotrophic seedling growth can be defined as a product of two components: (1) the weight of mobilized seed reserve, and (2) conversion efficiency of utilized seed reserve to seedling tissue. The first component can be further divided into (1) initial seed weight, and (2) the fraction of seed reserve, which is mobilized. The objective of this study was the identification of the sensitive seedling growth component(s) in response to drought and salinity stresses. Two experiments were separately conducted using various salinity levels (osmotic pressure) of 0, 0.25, 0.50, 0.75, 1, 1.25 and 1.5 MPa created using NaCl as first experiment and by polyethylene glycol (drought stress) of 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4 MPa in second experiment. Seeds of five crops species (Hordeum vulgare, Brassica napus, Zea mays, Medicago sativa and Medicago scutellata) were used in each experiment. In both experiments, seedling growth, fraction of seed reserve utilization and weight of mobilized seed reserve decreased with increasing drought and salt intensity. However, drought and salinity stresses had no effect on the conversion efficiency. It was concluded that the sensitive component of seedling growth is the weight of mobilized seed reserve.Keywords: Salinity, Drought, Seed reserve, Seedling, Cropsspecies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191111714 Multiple-Points Fault Signature's Dynamics Modeling for Bearing Defect Frequencies
Authors: Muhammad F. Yaqub, Iqbal Gondal, Joarder Kamruzzaman
Abstract:
Occurrence of a multiple-points fault in machine operations could result in exhibiting complex fault signatures, which could result in lowering fault diagnosis accuracy. In this study, a multiple-points defect model (MPDM) is proposed which can simulate fault signature-s dynamics for n-points bearing faults. Furthermore, this study identifies that in case of multiple-points fault in the rotary machine, the location of the dominant component of defect frequency shifts depending upon the relative location of the fault points which could mislead the fault diagnostic model to inaccurate detections. Analytical and experimental results are presented to characterize and validate the variation in the dominant component of defect frequency. Based on envelop detection analysis, a modification is recommended in the existing fault diagnostic models to consider the multiples of defect frequency rather than only considering the frequency spectrum at the defect frequency in order to incorporate the impact of multiple points fault.
Keywords: Envelop detection, machine defect frequency, multiple faults, machine health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227411713 Quantum Computation using Two Component Bose-Einstein Condensates
Authors: Tim Byrnes
Abstract:
Quantum computation using qubits made of two component Bose-Einstein condensates (BECs) is analyzed. We construct a general framework for quantum algorithms to be executed using the collective states of the BECs. The use of BECs allows for an increase of energy scales via bosonic enhancement, resulting in two qubit gate operations that can be performed at a time reduced by a factor of N, where N is the number of bosons per qubit. We illustrate the scheme by an application to Deutsch-s and Grover-s algorithms, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.
Keywords: Quantum, computing, information, Bose-Einstein condensates, macroscopic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197711712 Inheritance of Primary Yield Component Traits of Common Beans (Phaseolus vulgaris L.): Number of Seeds per Pod and 1000 Seed Weight in an 8X8 Diallel Cross Population
Authors: Atnaf Tiruneh Mulugeta, Mohammed Ali Hussein, Zelleke Habtamu
Abstract:
Thirty six genotypes (8 parents and 28 F1 diallel crosses) were grown in randomized complete block design during 2006 at Mandura, North western Ethiopia. The experiment was executed to study the inheritance of two primary yield component traits: number of seeds per pod and 1000 seed weight. Statistical significant difference was observed between genotypes, parents, and crosses for these traits. The mean square due to GCA was significant for the two traits. However, SCA mean square was significant only for number of seeds per pod. Thus both additive and non-additive types of gene actions were important in the inheritance of number of seeds per pod. Significant b1 component was obtained for this trait. The b2 and b3 components, however, were not significant, suggesting the absence of gene asymmetry. From Wr/Vr graph, inheritance of seeds per pod was governed by partial dominance with additive gene action.
Keywords: Diallel crosses, General combining ability, Phaseolus vulgaris L., Specific combining ability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249311711 Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition
Authors: Liton Jude Rozario, Mohammad Reduanul Haque, Md. Ziarul Islam, Mohammad Shorif Uddin
Abstract:
Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.
Keywords: PCA, ICA, LDA, SVM, face recognition, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243111710 Stabilizer Fillet Weld Strength under Multiaxial Loading (Effect of Force, Size and Residual Stress)
Authors: Iman Hadipour, Javad Marzbanrad
Abstract:
In this paper, the strength of a stabilizer is determined when the static and fatigue multiaxial loading are applied. Stabilizer is a part of suspension system in the heavy truck for stabilizing the cabin against the vibration of the road which composes of a thin-walled tube joined to a forge component by fillet weld. The component is loaded by non proportional random sequence of torsion and bending. Residual stress of welding process is considered here for static loading. This static loading with road irregularities are applied in this study as fatigue case that can affected in the fillet welded area of this part. The stresses in the welded structure are calculated using FEA. In addition, the fatigue with multi axial loading in the fillet weld is also investigated and the critical zone of the stabilizer is specified and presented by graphs. Residual stresses that have been resulted by the thermal forces are considered in FEA. Force increasing is the element of finding the critical point of the component.Keywords: Fillet weld, fatigue, weld toe crack, weld root crack, S-N curve, multiaxial load, residual stress, combined force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206511709 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.
Keywords: Climate, infrastructure degradation, HVAC, neighborhood component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211708 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets
Authors: Satjaporn Tungsong, Gun Srijuntongsiri
Abstract:
This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574