Search results for: WLAN-Wireless Local Area Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6093

Search results for: WLAN-Wireless Local Area Network

4653 Occurrence of High Nocturnal Surface Ozone at a Tropical Urban Area

Authors: S. Dey, P. Sibanda, S. Gupta, A. Chakraborty

Abstract:

The occurrence of high nocturnal surface ozone over a tropical urban area (23̊ 32′16.99″ N and 87̊ 17′ 38.95″ E) is analyzed in this paper. Five incidences of nocturnal ozone maxima are recorded during the observational span of two years (June, 2013 to May, 2015). The maximum and minimum values of the surface ozone during these five occasions are 337.630 μg/m3 and 13.034 μg/m3 respectively. HYSPLIT backward trajectory analyses and wind rose diagrams support the horizontal transport of ozone from distant polluted places. Planetary boundary layer characteristics, concentration of precursor (NO2) and meteorology are found to play important role in the horizontal and vertical transport of surface ozone during nighttime.

Keywords: Nocturnal ozone, planetary boundary layer, horizontal transport, meteorology, urban area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
4652 Salient Points Reduction for Content-Based Image Retrieval

Authors: Yao-Hong Tsai

Abstract:

Salient points are frequently used to represent local properties of the image in content-based image retrieval. In this paper, we present a reduction algorithm that extracts the local most salient points such that they not only give a satisfying representation of an image, but also make the image retrieval process efficiently. This algorithm recursively reduces the continuous point set by their corresponding saliency values under a top-down approach. The resulting salient points are evaluated with an image retrieval system using Hausdoff distance. In this experiment, it shows that our method is robust and the extracted salient points provide better retrieval performance comparing with other point detectors.

Keywords: Barnard detector, Content-based image retrieval, Points reduction, Salient point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
4651 Food Package Design to Preserve Food Temperature

Authors: Sugiono, W. Ardiatna, H. Firdaus, N. Kusnandar, B. Utomo, J. A. Kadar

Abstract:

It is desirable that most human food is warm when eaten, including when food is obtained by taking it away from the point of sale in disposable food packaging. However, such packaging does not retain heat for a long time, which is necessary to ensure the food remains warm when eaten. The study looked for single-use food packaging that could retain the heat of the food for a long time. The methodology for obtaining such packaging is either by modifying available packages on the market or by making new ones with materials that are easily obtained locally, then testing by loading the local food and measuring its temperature and the length of time until it reaches the lowest acceptable temperature for hot food (56°C). Packages made of plastic boxes lined with thin aluminum foil on the inside are the best way to keep food warm for up to 44 minutes from the time it is put in the package to the time the required temperature is reached. Moreover, packaging made of local common food paper, where the food was put in a transparent plastic bag inside the package, was found to be the simplest package that could retain heat for 82.31% as long as the best packaging could, in this study. Plastic boxes with thin aluminum foil inside were the best single-use food packaging in this study that served to keep hot food warm and fit for consumption.

Keywords: Aluminum foil, hot food, local food, packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
4650 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks

Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada

Abstract:

Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.

Keywords: Optical burst switching, OBS, flow rate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
4649 Improve of Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)

Authors: Dong-Young Yoo, Jong-Whoi Shin, Gang Shin Lee, Jae-Il Lee

Abstract:

As the disfunctions of the information society and social development progress, intrusion problems such as malicious replies, spam mail, private information leakage, phishing, and pharming, and side effects such as the spread of unwholesome information and privacy invasion are becoming serious social problems. Illegal access to information is also becoming a problem as the exchange and sharing of information increases on the basis of the extension of the communication network. On the other hand, as the communication network has been constructed as an international, global system, the legal response against invasion and cyber-attack from abroad is facing its limit. In addition, in an environment where the important infrastructures are managed and controlled on the basis of the information communication network, such problems pose a threat to national security. Countermeasures to such threats are developed and implemented on a yearly basis to protect the major infrastructures of information communication. As a part of such measures, we have developed a methodology for assessing the information protection level which can be used to establish the quantitative object setting method required for the improvement of the information protection level.

Keywords: Information Security Evaluation Methodology, Critical Information Infrastructure Protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
4648 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
4647 Structural Sustainability Techniques for RC High Rise Buildings

Authors: Mohamed A. Azab

Abstract:

Over the early years of the 21st century, cities throughout the Middle East, particularly in the Gulf region have expanded more rapidly than ever before. Given the presence of a large volume of high-rise buildings allover the region, the local authority aims to set a new standard for sustainable development; with an integrated approach to maintain a balance between economy, quality, environmental protection and safety of life. In the very near future, as mandatory requirements, sustainability will be the criteria that should be included in all building projects. It is well known in the building sustainability topics that structural design engineers do not have a key role in this matter. In addition, the LEED (Leadership in Energy and Environmental Design) has looked almost exclusively on the environmental components and materials specifications. The objective of this paper is to focus and establish groundwork for sustainability techniques and applications related to the RC high-rise buildings design, from the structural point of view. A set of recommendations related to local conditions, structural modeling and analysis is given, and some helpful suggestions for structural design team work are addressed. This paper attempts to help structural engineers in identifying the building sustainability design, in order to meet local needs and achieve alternative solutions at an early stage of project design.

Keywords: Building, Design, High-rise, Middle East, Structural, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3470
4646 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: Queueing network, discrete-event simulation, health applications, SPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
4645 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model

Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik

Abstract:

In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.

Keywords: Growth management, land use externalities, land value, spatial panel dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
4644 Forecasting Tala-AUD and Tala-USD Exchange Rates with ANN

Authors: Shamsuddin Ahmed, M. G. M. Khan, Biman Prasad, Avlin Prasad

Abstract:

The focus of this paper is to construct daily time series exchange rate forecast models of Samoan Tala/USD and Tala/AUD during the year 2008 to 2012 with neural network The performance of the models was measured by using varies error functions such as Root Square mean error (RSME), Mean absolute error (MAE), and Mean absolute percentage error (MAPE). Our empirical findings suggest that AR (1) model is an effective tool to forecast the Tala/USD and Tala/AUD.

Keywords: Neural Network Forecasting Model, Autoregressive time series, Exchange rate, Tala/AUD, winters model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
4643 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
4642 An Area-Efficient and Low-Power Digital Pulse-Width Modulation Controller for DC-DC Switching Power Converter

Authors: Jingjing Lan, Jun Zhou, Xin Liu

Abstract:

In this paper, a low-power digital controller for DC-DC power conversion was presented. The controller generates the pulse-width modulated (PWM) signal from digital inputs provided by analog-to-digital converter (ADC). An efficient and simple design scheme to develop the control unit was discussed. This method allows minimization of the consumed resources of the chip and it is based on direct digital design approach. In this application, with the proposed scheme, nearly half area and two-third of the power consumption was saved compared to the conventional schemes. This work illustrates the possibility of implementing low-power and area-efficient power management circuit using direct digital design based approach. 

Keywords: Buck converter, DC-DC power conversion, digital control, proportional-integral (PI) controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
4641 A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem

Authors: S. B. Liu, K. M. Ng, H. L. Ong

Abstract:

This paper presents a new heuristic algorithm for the classical symmetric traveling salesman problem (TSP). The idea of the algorithm is to cut a TSP tour into overlapped blocks and then each block is improved separately. It is conjectured that the chance of improving a good solution by moving a node to a position far away from its original one is small. By doing intensive search in each block, it is possible to further improve a TSP tour that cannot be improved by other local search methods. To test the performance of the proposed algorithm, computational experiments are carried out based on benchmark problem instances. The computational results show that algorithm proposed in this paper is efficient for solving the TSPs.

Keywords: Local search, overlapped neighborhood, travelingsalesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
4640 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5684
4639 Cryptanalysis of Yang-Li-Liao’s Simple Three-Party Key Exchange (S-3PAKE) Protocol

Authors: Hae-Soon Ahn, Eun-Jun Yoon

Abstract:

Three-party password authenticated key exchange (3PAKE) protocols are widely deployed on lots of remote user authentication system due to its simplicity and convenience of maintaining a human-memorable password at client side to achieve secure communication within a hostile network. Recently, an improvement of 3PAKE protocol by processing a built-in data attached to other party for identity authentication to individual data was proposed by some researchers. However, this paper points out that the improved 3PAKE protocol is still vulnerable to undetectable on-line dictionary attack and off-line dictionary attack.

Keywords: Three-party key exchange, 3PAKE, Passwordauthenticated key exchange, Network security, Dictionary attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
4638 A Robust Adaptive Congestion Control Strategy for Large Scale Networks with Differentiated Services Traffic

Authors: R. R. Chen, K. Khorasani

Abstract:

In this paper, a robust decentralized congestion control strategy is developed for a large scale network with Differentiated Services (Diff-Serv) traffic. The network is modeled by a nonlinear fluid flow model corresponding to two classes of traffic, namely the premium traffic and the ordinary traffic. The proposed congestion controller does take into account the associated physical network resource limitations and is shown to be robust to the unknown and time-varying delays. Our proposed decentralized congestion control strategy is developed on the basis of Diff-Serv architecture by utilizing a robust adaptive technique. A Linear Matrix Inequality (LMI) condition is obtained to guarantee the ultimate boundedness of the closed-loop system. Numerical simulation implementations are presented by utilizing the QualNet and Matlab software tools to illustrate the effectiveness and capabilities of our proposed decentralized congestion control strategy.

Keywords: Congestion control, Large scale networks, Decentralized control, Differentiated services traffic, Time-delay systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
4637 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
4636 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu

Abstract:

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
4635 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.

Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
4634 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks

Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.

Abstract:

The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.

Keywords: Clusters, fuzzy and optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
4633 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
4632 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
4631 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284
4630 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
4629 Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment

Authors: G. A. Gevorgyan, K. A. Ghazaryan, T. H. Derdzyan

Abstract:

The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring ore from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, however, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics.

Keywords: Armenia, copper mine, heavy metal pollution of soil, health risks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
4628 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics

Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo

Abstract:

A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.

Keywords: Behavioural biometric, Face biometric, Neural network, Physical biometric, Signature biometric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
4627 Performance Assessment and Optimization of the After-Sale Networks

Authors: H. Izadbakhsh, M.Hour Ali, A. Amirkhani, A. Montazeri, M. Saberi

Abstract:

The after–sales activities are nowadays acknowledged as a relevant source of revenue, profit and competitive advantage in most manufacturing industries. Top and middle management, therefore, should focus on the definition of a structured business performance measurement system for the after-sales business. The paper aims at filling this gap, and presents an integrated methodology for the after-sales network performance measurement, and provides an empirical application to automotive case companies and their official service network. This is the first study that presents an integrated multivariate approach for total assessment and improvement of after-sale services.

Keywords: Data Envelopment Analysis (DEA), Principal Component Analysis (PCA), Automotive companies, After-sale services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
4626 Printed Arabic Sub-Word Recognition Using Moments

Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh

Abstract:

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
4625 Distributed e-Learning System with Client-Server and P2P Hybrid Architecture

Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara

Abstract:

We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and a function are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In this system, all computers offer the function and exercise by themselves. However, the system that all computers do the same behavior is not realistic. In this paper, as a solution of this issue, we present an e-Learning system that is composed of computers of different participation types. Enabling the computer of different participation types will improve the convenience of the system.

Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
4624 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees

Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart

Abstract:

In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.

Keywords: Personnel assessment, ANP (analytic network process), two-way.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789