Search results for: Pressure Tube
94 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts
Authors: Stephanie Ho
Abstract:
This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.
Keywords: Arts-informed pedagogies, language arts, literature, Surrealism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74193 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.
Keywords: Base station, clustering algorithm, energy efficient, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85492 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs
Authors: Sawarni Hasibuan, Juliza Hidayati
Abstract:
Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.Keywords: Cleaner production innovation, creativity, SMEs Batik, sustainability supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88491 Optical Flow Technique for Supersonic Jet Measurements
Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi
Abstract:
This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.
Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190790 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230089 A Retrospective Drug Utilization Study of Antiplatelet Drugs in Patients with Ischemic Heart Disease
Authors: K. Jyothi, T. S. Mohamed Saleem, L. Vineela, C. Gopinath, K. B. Yadavender Reddy
Abstract:
Objective: Acute coronary syndrome is a clinical condition encompassing ST segments elevation myocardial infraction, Non ST segment is elevation myocardial infraction and un stable angina is characterized by ruptured coronary plaque, stress and myocardial injury. Angina pectoris is a pressure like pain in the chest that is induced by exertion or stress and relived with in the minute after cessation of effort or using sublingual nitroglycerin. The present research was undertaken to study the drug utilization pattern of antiplatelet drugs for the ischemic heart disease in a tertiary care hospital. Method: The present study is retrospective drug utilization study and study period is 6months. The data is collected from the discharge case sheet of general medicine department from medical department Rajiv Gandhi institute of medical sciences, Kadapa. The tentative sample size fixed was 250 patients. Out of 250 cases 19 cases was excluded because of unrelated data. Results: A total of 250 prescriptions were collected for the study according to the inclusion criteria 233 prescriptions were diagnosed with ischemic heart disease 17 prescriptions were excluded due to unrelated information. out of 233 prescriptions 128 are male (54.9%) and 105 patients are were female (45%). According to the gender distribution, the prevalence of ischemic heart disease in males are 90 (70.31%) and females are 39 (37.1%). In the same way the prevalence of ischemic heart disease along with cerebrovascular disease in males are 39 (29.6%) and females are 66 (62.6%). Conclusion: We found that 94.8% of drug utilization of antiplatelet drugs was achieved in the Rajiv Gandhi institute of medical sciences, Kadapa from 2011-2012.Keywords: Angina pectoris, aspirin, clopidogrel, myocardial infarction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201288 Microalbuminuria in Essential Hypertension
Authors: Sharan Badiger, Prema T. Akkasaligar, Sandeep HM, Biradar MS
Abstract:
Essential hypertension (HTN) usually clusters with other cardiovascular risk factors such as age, overweight, diabetes, insulin resistance and dyslipidemia. The target organ damage (TOD) such as left ventricular hypertrophy, microalbuminuria (MA), acute coronary syndrome (ACS), stroke and cognitive dysfunction takes place early in course of hypertension. Though the prevalence of hypertension is high in India, the relationship between microalbuminuria and target organ damage in hypertension is not well studied. This study aim at detecting MA in essential hypertension and its relation to severity of HTN, duration of HTN, body mass index (BMI), age and TOD such as HTN retinopathy and acute coronary syndrome The present study was done in 100 patients of essential hypertension non diabetics admitted to B.L.D.E.University-s Sri B.M.Patil Medical College, Bijapur, from October 2008 to April 2011. The patients underwent detailed history and clinical examination. Early morning 5 ml of urine sample was collected & MA was estimated by immunoturbidometry method. The relationship of MA with the duration & severity of HTN, BMI, age, sex and TOD's like hypertensive retinopathy, ACS was assessed by univariate analysis. The prevalence of MA in this study was found to be 63 %. In that 42% were male & 21% were female. In this study a significant association between MA and the duration of hypertension (p = 0.036) & (OR =0.438). Longer the duration of hypertension, more possibility of microalbumin in urine. Also there was a significant association between severity of hypertension and MA (p=0.045) and (OR=0.093). MA was positive in 50 (79.4%) patients out of 63, whose blood pressure was >160/100 mm Hg. In this study a significant association between MA and the grades of hypertensive retinopathy (p =0.011) and acute coronary syndrome (p = 0.041) (OR =2.805). Gender and BMI did not pose high risk for MA in this study.The prevalence of MA in essential hypertension is high in this part of the community and MA will increase the risk of developing target organ damage.Early screening of patients with essential hypertension for MA and aggressive management of positive cases might reduce the burden of chronic kidney diseases and cardiovascular diseases in the community.
Keywords: Acute coronary syndrome, Essential hypertension, Microalbuminuria, Target organ damage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239387 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor
Authors: F. Gholami, M. Torabi Angaji, Z. Gholami
Abstract:
Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302486 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).
Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89885 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler
Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim
Abstract:
This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.
Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220884 Multi-Objective Optimization of Gas Turbine Power Cycle
Authors: Mohsen Nikaein
Abstract:
Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253183 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations
Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam
Abstract:
When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.
Keywords: Acid treatment, carbonate, diversion, sandstone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405382 Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process
Authors: S. A. Razavi Alavi, M. Torabi Angaji, Z. Gholami
Abstract:
In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9Keywords: Extrusion, Extruder, Granule, HDPE, Polymer, Twin-Screw extruder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498581 Auto-Selective Three Term Control of Position and Compliance of a Pneumatic Actuator
Authors: M. G. Papoutsidakis, G. Chamilothoris, A Pipe
Abstract:
Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. The paper presents a methodology for obtaining controllers that achieve high position accuracy and preserve the closed-loop characteristics over a broad operating range. Experimentation with a number of conventional (or "classical") three-term controllers shows that, as repeated operations accumulate, the characteristics of the pneumatic actuator change requiring frequent re-tuning of the controller parameters (PID gains). Furthermore, three-term controllers are found to perform poorly in recovering the closed-loop system after the application of load or other external disturbances. The key reason for these problems lies in the non-linear exchange of energy inside the cylinder relating, in particular, to the complex friction forces that develop on the piston-wall interface. In order to overcome this problem but still remain within the boundaries of classical control methods, we designed an auto selective classicaql controller so that the system performance would benefit from all three control gains (KP, Kd, Ki) according to system requirements and the characteristics of each type of controller. This challenging experimentation took place for consistent performance in the face of modelling imprecision and disturbances. In the work presented, a selective PID controller is presented for an experimental rig comprising an air cylinder driven by a variable-opening pneumatic valve and equipped with position and pressure sensors. The paper reports on tests carried out to investigate the capability of this specific controller to achieve consistent control performance under, repeated operations and other changes in operating conditions.
Keywords: Classical selective controller, long-termexperimentation, pneumatic actuator, position accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194280 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt
Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify
Abstract:
The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties.
There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes.
The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grainstone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intraparticle pore spaces, which may produce lines of weakness within the rock.
Keywords: Compressive strength, Anisotropy, Calcarenites, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413379 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.Keywords: Slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162478 The Planning and Development of Green Public Places in Urban South Africa: A Child-Friendly Approach
Authors: E. J. Cilliers, Z. Goosen
Abstract:
The impact that urban green spaces have on sustainability and quality of life is phenomenal. This is also true for the local South African environment. However, in reality green spaces in urban environments are decreasing due to growing populations, increasing urbanization and development pressure. This further impacts on the provision of child-friendly spaces, a concept that is already limited in local context. Child-friendly spaces are described as environments in which people (children) feel intimately connected to, influencing the physical, social, emotional, and ecological health of individuals and communities. The benefits of providing such spaces for the youth are well documented in literature. This research therefore aimed to investigate the concept of child-friendly spaces and its applicability to the South African planning context, in order to guide the planning of such spaces for future communities and use. Child-friendly spaces in the urban environment of the city of Durban, was used as local case study, along with two international case studies namely Mullerpier public playground in Rotterdam, the Netherlands, and Kadidjiny Park in Melville, Australia. The aim was to determine how these spaces were planned and developed and to identify tools that were used to accomplish the goal of providing successful child-friendly green spaces within urban areas. The need and significance of planning for such spaces was portrayed within the international case studies. It is confirmed that minimal provision is made for green space planning within the South African context, when there is reflected on the international examples. As a result international examples and disciples of providing child-friendly green spaces should direct planning guidelines within local context. The research concluded that child-friendly green spaces have a positive impact on the urban environment and assist in a child’s development and interaction with the natural environment. Regrettably, the planning of these child-friendly spaces is not given priority within current spatial plans, despite the proven benefits of such.
Keywords: Built environment, child-friendly spaces, green spaces. public places, urban area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230777 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop
Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya
Abstract:
Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.Keywords: Conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151576 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests
Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani
Abstract:
Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.
Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129075 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM
Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari
Abstract:
Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.
Keywords: CFD, Moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155274 Impact Assessment of Credit Policy and Medical Credit Facility (MCF) on Nigerian Private Sector Health Market: Evidence from Eight Nigerian States
Authors: Chimaobi V. Okolo, Kenneth A. Okpala, Johnbull S. Ogboi
Abstract:
A teeming set of doctors that graduated from various universities within and outside Nigeria with the hope of practicing in the country, has their hope shattered because of poor financing, lack of medical equipments and a very weak healthcare systems. Such hydra headed challenges, allows room for quackery which increasingly contributes to the cause of mortality in Nigeria. With a view of reversing the challenges of healthcare delivery and financing in Nigeria, African Health Market for Equity (AHME), a project funded by the Bill and Melinda Gates foundation [With contribution from Department For International Development (DFID)] and currently implemented in three African Countries (Nigeria, Kenya and Ghana) over a Five (5) year period supports the healthcare sector via Medical credit fund (MCF). The study examines the impact of credit policy and medical credit funding on Nigerian health market. Ordinary least square analysis, correlation and granger causality tests were employed to measure the extent to which the Nigerian healthcare market has been influenced. Medical credit fund significantly and positively influenced average monthly turnover of private healthcare providers and Commercial bank’s lending rate had a weak relationship with access to credit/approved loans (13.46%). The programme has so far made 13.91% progress, which is very poor, considering the minimum targeted private health care providers (437.6) and expected number of loan approvals (180.4) for the two years. Medical credit policy in Nigeria should be revised to include private healthcare providers in rural area for more positive impact and increased returns. Good brand advert and sensitization of the programme to stakeholders and health pressure group, and an extension of the programme beyond five years is necessary to better address the issues raised in the study.Keywords: Credit, health market, medical credit facility, policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175273 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102672 The Prevalence of Organized Retail Crime in Riyadh, Saudi Arabia
Authors: Saleh Dabil
Abstract:
This study investigates the level of existence of organized retail crime in supermarkets of Riyadh, Saudi Arabia. The store managers, security managers and general employees were asked about the types of retail crimes occur in the stores. Three independent variables were related to the report of organized retail theft. The independent variables are: 1) the supermarket profile (volume, location, standard and type of the store), 2) the social physical environment of the store (maintenance, cleanness and overall organizational cooperation), 3) the security techniques and loss prevention electronics techniques used. The theoretical framework of this study based on the social disorganization theory. This study concluded that the organized retail theft, in specific, organized theft is moderately apparent in Riyadh stores. The general result showed that the environment of the stores has an effect on the prevalence of organized retail theft with relation to the gender of thieves, age groups, working shift, type of stolen items as well as the number of thieves in one case. Among other reasons, some factors of the organized theft are: economic pressure of customers based on the location of the store. The dealing of theft also was investigated to have a clear picture of stores dealing with organized retail theft. The result showed that mostly, thieves sent without any action and sometimes given written warning. Very few cases dealt with by police. There are other factors in the study can be looked up in the text. This study suggests solving the problem of organized theft; first, is "the well distributing of the duties and responsibilities between the employees especially for security purposes". Second "Installation of strong security system" and "Making well-designed store layout". Third is "giving training for general employees" and "to give periodically security skills training of employees". There are other suggestions in the study can be looked up in the text.
Keywords: Organized Crime, Retail, Theft, Loss prevention, Store environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233971 Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves
Authors: Y. C. Mao, G. S. Chen
Abstract:
Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.
Keywords: Modelling, Simulation, Bicycle, Shock Absorber, Damping, Releasing Valve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289470 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method
Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami
Abstract:
Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH‑). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.
Keywords: Adsorption-Cross linking, lipase, resin, immobilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79969 Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
The use of biodiesel in conventional diesel engines results in substantial reduction of unburned hydrocarbon, carbon monoxide and particulate matters. The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio engine when fueled with Karanja (Pongamia) methyl ester and its 10-50 % blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of karanja methyl ester as a biofuel has been established in this study. The useful brake power obtained is similar to diesel fuel for all loads. Experiment has been conducted at a fixed engine speed of 1500 rpm, variable load and at compression ratios of 17.5:1 and 18.5:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for pongamia oil methyl ester when compared to that of diesel. The brake thermal efficiency for pongamia oil methyl ester blends and diesel has been calculated and the blend B20 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. PME as an oxygenated fuel generated more complete combustion, which means increased torque and power. This is also supported with higher thermal efficiencies of the PME blends. NOx is slightly increased due to the higher combustion temperature and the presence of fuel oxygen with the blend at full load. PME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.
Keywords: Variable compression ratio CI engine, performance, combustion, emissions, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330368 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.
Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169067 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate
Authors: C. Lanzerstorfer, M. Hinterberger
Abstract:
The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.
Keywords: Iron ore concentrate, flowability, moisture content, wall friction angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152366 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.
Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91565 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions
Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün
Abstract:
Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750