Search results for: molecular aggregate approach.
4054 Performance of Bridge Approach Slabs in Bridge Construction: A Case Study
Authors: Aurora Cerri, Niko Pullojani
Abstract:
Long-term differential settlement between the bridge structure and the bridge embankment typically results in an abrupt grade change, causing driver discomfort, impairing driver safety, and exerting a potentially excessive impact traffic loading on the abutment. This paper has analysed a case of study showing the effect of an approaching slab realized in a bridge constructed at Tirane-Elbasan Motorway. The layer thickness under the slab is modeled as homogenous, the slab is a reinforced concrete structure and over that the asphaltic layers take place. Analysis indicates that reinforced concrete approaching slab distributes the stresses quite uniformly into the road fill layers and settlements varies in a range less than 2.50 cm in the total slab length of 6.00 m with a maximum slope of 1/240. Results taken from analytical analysis are compared with topographic measurements done on field and they carry great similarities.Keywords: Approach slab, bridge, road pavement, differential settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11774053 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.
Keywords: Image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11604052 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.
Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284051 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: Hyperspectral image, spatial hypergraph, dimensionality reduction, semantic interpretation, band selection, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12204050 Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process
Authors: Guenther Schuh, Sebastian Woelk, Daniel Schraknepper, Anders Such
Abstract:
The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbomachinery components.
Keywords: Manufacturing, product design, production, technology assessment, technology management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22014049 The Formation of Mutual Understanding in Conversation: An Embodied Approach
Authors: Haruo Okabayashi
Abstract:
The mutual understanding in conversation is very important for human relations. This study investigates the mental function of the formation of mutual understanding between two people in conversation using the embodied approach. Forty people participated in this study. They are divided into pairs randomly. Four conversation situations between two (make/listen to fun or pleasant talk, make/listen to regrettable talk) are set for four minutes each, and the finger plethysmogram (200 Hz) of each participant is measured. As a result, the attractors of the participants who reported “I did not understand my partner” show the collapsed shape, which means the fluctuation of their rhythm is too small to match their partner’s rhythm, and their cross correlation is low. The autonomic balance of both persons tends to resonate during conversation, and both LLEs tend to resonate, too. In human history, in order for human beings as weak mammals to live, they may have been with others; that is, they have brought about resonating characteristics, which is called self-organization. However, the resonant feature sometimes collapses, depending on the lifestyle that the person was formed by himself after birth. It is difficult for people who do not have a lifestyle of mutual gaze to resonate their biological signal waves with others’. These people have features such as anxiety, fatigue, and confusion tendency. Mutual understanding is thought to be formed as a result of cooperation between the features of self-organization of the persons who are talking and the lifestyle indicated by mutual gaze. Such an entanglement phenomenon is called a nonlinear relation. By this research, it is found that the formation of mutual understanding is expressed by the rhythm of a biological signal showing a nonlinear relationship.
Keywords: Embodied approach, finger plethysmogram, mutual understanding, nonlinear phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12994048 Development Techniques of Multi-Agents Based Autonomous Railway Vehicles Control Systems
Authors: M. Saleem Khan, Khaled Benkrid
Abstract:
This paper presents the development techniques for a complete autonomous design model of an advanced train control system and gives a new approach for the implementation of multi-agents based system. This research work proposes to develop a novel control system to enhance the efficiency of the vehicles under constraints of various conditions, and contributes in stability and controllability issues, considering relevant safety and operational requirements with command control communication and various sensors to avoid accidents. The approach of speed scheduling, management and control in local and distributed environment is given to fulfill the dire needs of modern trend and enhance the vehicles control systems in automation. These techniques suggest the state of the art microelectronic technology with accuracy and stability as forefront goals.Keywords: Multi-agents, Railway vehicle control system, autonomous design, Train management, Speed scheduling andcontrol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19304047 A New Concept for Deriving the Expected Value of Fuzzy Random Variables
Authors: Liang-Hsuan Chen, Chia-Jung Chang
Abstract:
Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.
Keywords: Fuzzy random variables, Distance measure, Expected value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20564046 Integrated ACOR/IACOMV-R-SVM Algorithm
Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud
Abstract:
A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8804045 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434044 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence
Authors: Francesca Radice
Abstract:
It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.
Keywords: Sentiment Analysis, data mining, predictive policing, virtual manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544043 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.
Keywords: Chitosan, coaxial electrospinning, controlled releasing, indocyanine green, nanoprobe, polyethylene oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7644042 A New Heuristic Approach to Solving U-shape Assembly Line Balancing Problems Type-1
Authors: M. Fathi, M. J. Alvarez, V. Rodríguez
Abstract:
Assembly line balancing is a very important issue in mass production systems due to production cost. Although many studies have been done on this topic, but because assembly line balancing problems are so complex they are categorized as NP-hard problems and researchers strongly recommend using heuristic methods. This paper presents a new heuristic approach called the critical task method (CTM) for solving U-shape assembly line balancing problems. The performance of the proposed heuristic method is tested by solving a number of test problems and comparing them with 12 other heuristics available in the literature to confirm the superior performance of the proposed heuristic. Furthermore, to prove the efficiency of the proposed CTM, the objectives are increased to minimize the number of workstation (or equivalently maximize line efficiency), and minimizing the smoothness index. Finally, it is proven that the proposed heuristic is more efficient than the others to solve the U-shape assembly line balancing problem.Keywords: Critical task method, Heuristic, Line balancingproblem, U-shape
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24734041 An Algebra for Protein Structure Data
Authors: Yanchao Wang, Rajshekhar Sunderraman
Abstract:
This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15434040 Feature Extraction for Surface Classification – An Approach with Wavelets
Authors: Smriti H. Bhandari, S. M. Deshpande
Abstract:
Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.
Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22454039 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (Bi)digraphs, rough set theory, systems of interacting agents, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11904038 A Quality-Oriented Approach toward Strategic Positioning in Higher Education Institutions
Authors: M. M. Mashhadi, K. Mohajeri, M. D. Nayeri
Abstract:
Positioning the organization in the strategic environment of its industry is one of the first and most important phases of the organizational strategic planning and in today knowledge-based economy has its importance been duplicated for higher education institutes as the centers of education, knowledge creation and knowledge worker training. Up to now, various models with diverse approaches have been applied to investigate organizations- strategic position in different industries. Regarding the essential importance and strategic role of quality in higher education institutes, in this study, a quality-oriented approach has been suggested to positioning them in their strategic environment. Then the European Foundation of Quality Management (EFQM) model has been adopted to position the top Iranian business schools in their strategic environment. The result of this study can be used in strategic planning of these institutes as well as the other Iranian business schools.Keywords: Strategic planning, Strategic positioning, Quality, EFQM model, Higher education institutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25154037 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications
Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam
Abstract:
The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14694036 Investments Attractiveness via Combinatorial Optimization Ranking
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The paper proposes an approach to ranking a set of potential countries to invest taking into account the investor point of view about importance of different economic indicators. For the goal, a ranking algorithm that contributes to rational decision making is proposed. The described algorithm is based on combinatorial optimization modeling and repeated multi-criteria tasks solution. The final result is list of countries ranked in respect of investor preferences about importance of economic indicators for investment attractiveness. Different scenarios are simulated conforming to different investors preferences. A numerical example with real dataset of indicators is solved. The numerical testing shows the applicability of the described algorithm. The proposed approach can be used with any sets of indicators as ranking criteria reflecting different points of view of investors.
Keywords: Combinatorial optimization modeling, economics investment attractiveness, economics ranking algorithm, multi-criteria problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21074035 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm
Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian
Abstract:
The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9174034 A Heuristics Approach for Fast Detecting Suspicious Money Laundering Cases in an Investment Bank
Authors: Nhien-An Le-Khac, Sammer Markos, M-Tahar Kechadi
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most international financial institutions have been implementing anti-money laundering solutions (AML) to fight investment fraud. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project for the purpose of developing a new solution for the AML Units in an international investment bank, we proposed a data mining-based solution for AML. In this paper, we present a heuristics approach to improve the performance for this solution. We also show some preliminary results associated with this method on analysing transaction datasets.Keywords: data mining, anti money laundering, clustering, heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35854033 Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory
Authors: Julio Molleda, Daniel F. García, Juan C. Granda, Francisco J. Suárez
Abstract:
One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.Keywords: Classification, Pattern Recognition, ProbabilisticReasoning, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14104032 Reflective Thinking and Experiential Learning: A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities and Greater Integration of Student Profiles
Authors: P. Bogas
Abstract:
As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences resulted from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the students' response can be described as: students who reinforce the initial deep approach, students who maintain the initial deep approach level and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to a possible adoption of deep approaches to learning, since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding to the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself and, on the other hand, the additional effort that this practice required for some of the students.
Keywords: Experiential learning, higher education, marketing, mixed methods, reflective thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054031 A Study on Finding Similar Document with Multiple Categories
Authors: R. Saraçoğlu, N. Allahverdi
Abstract:
Searching similar documents and document management subjects have important place in text mining. One of the most important parts of similar document research studies is the process of classifying or clustering the documents. In this study, a similar document search approach that includes discussion of out the case of belonging to multiple categories (multiple categories problem) has been carried. The proposed method that based on Fuzzy Similarity Classification (FSC) has been compared with Rocchio algorithm and naive Bayes method which are widely used in text mining. Empirical results show that the proposed method is quite successful and can be applied effectively. For the second stage, multiple categories vector method based on information of categories regarding to frequency of being seen together has been used. Empirical results show that achievement is increased almost two times, when proposed method is compared with classical approach.
Keywords: Document similarity, Fuzzy classification, Multiple categories, Text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17074030 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.
Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10714029 P-ACO Approach to Assignment Problem in FMSs
Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh
Abstract:
One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.
Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19074028 Context for Simplicity: A Basis for Context-aware Systems Based on the 3GPP Generic User Profile
Authors: Enrico Rukzio, George N. Prezerakos, Giovanni Cortese, Eleftherios Koutsoloukas, Sofia Kapellaki
Abstract:
The paper focuses on the area of context modeling with respect to the specification of context-aware systems supporting ubiquitous applications. The proposed approach, followed within the SIMPLICITY IST project, uses a high-level system ontology to derive context models for system components which consequently are mapped to the system's physical entities. For the definition of user and device-related context models in particular, the paper suggests a standard-based process consisting of an analysis phase using the Common Information Model (CIM) methodology followed by an implementation phase that defines 3GPP based components. The benefits of this approach are further depicted by preliminary examples of XML grammars defining profiles and components, component instances, coupled with descriptions of respective ubiquitous applications.
Keywords: 3GPP, context, context-awareness, context model, information model, user model, XML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87744027 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing
Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill
Abstract:
In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.Keywords: Idea ontology, innovation management, open innovation, semantic search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7854026 Increasing Sustainability Using the Potential of Urban Rivers in Developing Countries with a Biophilic Design Approach
Authors: Mohammad Reza Mohammadian, Dariush Sattarzadeh, Mir Mohammad Javad Poor Hadi Hosseini
Abstract:
Population growth, urban development and urban buildup have disturbed the balance between the nature and the city, and so leading to the loss of quality of sustainability of proximity to rivers. While in the past, the sides of urban rivers were considered as urban green space. Urban rivers and their sides that have environmental, social and economic values are important to achieve sustainable development. So far, efforts have been made at various scales in various cities around the world to revitalize these areas. On the other hand, biophilic design is an innovative design approach in which attention to natural details and relation to nature is a fundamental concept. The purpose of this study is to provide an integrated framework of urban design using the potential of urban rivers (in order to increase sustainability) with a biophilic design approach to be used in cities in developing countries. The methodology of the research is based on the collection of data and information from research and projects including a study on biophilic design, investigations and projects related to the urban rivers, and a review of the literature on sustainable urban development. Then studying the boundary of urban rivers is completed by examining case samples. Eventually, integrated framework of urban design, to design the boundaries of urban rivers in the cities of developing countries is presented regarding the factors affecting the design of these areas. The result shows that according to this framework, the potential of the river banks is utilized to increase not only the environmental sustainability but also social, economic and physical stability with regard to water, light, and the usage of indigenous materials, etc.
Keywords: Urban rivers, biophilic design, urban sustainability, nature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12734025 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179