Search results for: ground thermal diffusivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1940

Search results for: ground thermal diffusivity

530 Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL)

Authors: A. Buasri, N. Chaiyut, K. Iamma, K. Kongcharoen, K. Cheunsakulpong

Abstract:

Biopolymers have gained much attention as ecofriendly alternatives to petrochemical-based plastics because they are biodegradable and can be produced from renewable feedstocks. One class of biopolyester with many potential environmentally friendly applications is polylactic acid (PLA) and polycaprolactone (PCL). The PLA/PCL biodegradable copolyesters were synthesized by bulk ring-opening copolymerization of successively added Llactide (LL) and ε-caprolactone (CL) in the presence of toluene, using 1-hexanol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Reaction temperature, reaction time and amount of catalyst were evaluated to obtain optimum reaction conditions. The results showed that the %conversion increased with increases in reaction temperature and reaction time, but after a critical amount of catalyst was reached the %conversion decreased. The yield of PLA/PCL biopolymer achieved 98.02% at the reaction temperature 160 °C, amount of catalyst 0.3 mol% and reaction time of 48 h. In addition, the thermal properties of the product were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

Keywords: Biopolymer, Polylactic Acid (PLA), Polycaprolactone (PCL), L-Lactide (LL), ε-Caprolactone (CL)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4485
529 Silicon-based Low-Power Reconfigurable Optical Add-Drop Multiplexer (ROADM)

Authors: Junfeng Song, Xianshu Luo, Qing Fang, Lianxi Jia, Xiaoguang Tu, Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo

Abstract:

We demonstrate a 1×4 coarse wavelength division-multiplexing (CWDM) planar concave grating multiplexer/demultiplexer and its application in re-configurable optical add/drop multiplexer (ROADM) system in silicon-on-insulator substrate. The wavelengths of the demonstrated concave grating multiplexer align well with the ITU-T standard. We demonstrate a prototype of ROADM comprising two such concave gratings and four wide-band thermo-optical MZI switches. Undercut technology which removes the underneath silicon substrate is adopted in optical switches in order to minimize the operation power. For all the thermal heaters, the operation voltage is smaller than 1.5 V, and the switch power is ~2.4 mW. High throughput pseudorandom binary sequence (PRBS) data transmission with up to 100 Gb/s is demonstrated, showing the high-performance ROADM functionality.

Keywords: ROADM, Optical switch, low power consumption, Integrated devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
528 Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate

Authors: Farid Vahedi

Abstract:

There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.

Keywords: Double Skin Façade Buildings, Energy Conservation, Renewable Energy, Natural Ventilation, Semi-arid Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5405
527 An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

Authors: M.kayhani, M.Nourouzi, A. Amiri Delooei

Abstract:

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Keywords: exact solution, composite laminate, heat conduction, cylinder, Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
526 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures

Authors: Samir Al-Zobaidi

Abstract:

This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100oC. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.

Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
525 Effect of Infills in Influencing the Dynamic Responses of Multistoried Structures

Authors: E. Rahmathulla Noufal

Abstract:

Investigating the dynamic responses of high rise structures under the effect of siesmic ground motion is extremely important for the proper analysis and design of multitoried structures. Since the presence of infilled walls strongly influences the behaviour of frame systems in multistoried buildings, there is an increased need for developing guidelines for the analysis and design of infilled frames under the effect of dynamic loads for safe and proper design of buildings. In this manuscript, we evaluate the natural frequencies and natural periods of single bay single storey frames considering the effect of infill walls by using the Eigen value analysis and validating with SAP 2000 (free vibration analysis). Various parameters obtained from the diagonal strut model followed for the free vibration analysis is then compared with the Finite Element model, where infill is modeled as shell elements (four noded). We also evaluated the effect of various parameters on the natural periods of vibration obtained by free vibration analysis in SAP 2000 comparing them with those obtained by the empirical expressions presented in I.S. 1893(Part I)- 2002.

Keywords: Infilled frame, eigen value analysis, free vibration analysis, diagonal strut model, finite element model, SAP 2000, natural period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
524 Microbial Production of Levan using Date Syrup and Investigation of Its Properties

Authors: Marzieh Moosavi-Nasab, Behnaz Layegh , Ladan Aminlari, Mohammad B. Hashemi

Abstract:

Levan, an exopolysaccharide, was produced by Microbacterium laevaniformans and its yield was characterized as a function of concentrations of date syrup, sucrose and the fermentation time. The optimum condition for levan production from sucrose was at concentration of 20% sucrose for 48 h and for date syrup was 25% for 48 h. The results show that an increase in fermentation time caused a decrease in the levan production at all concentrations of date syrup tested. Under these conditions after 48 h in sucrose medium, levan production reached 48.9 g/L and for date syrup reached 10.48 g/L . The effect of pH on the yield of the purified levan was examined and the optimum pH for levan production was determined to be 6.0. Levan was composed mainly of fructose residues when analyzed by TLC and FT-IR spectroscopy. Date syrup is a cheap substrate widely available in Iran and has potential for levan production. The thermal stability of levan was assessed by Thermo Gravimetric Analysis (TGA) that revealed the onset of decomposition near to 49°C for the levan produced from sucrose and 51°C for the levan from date syrup. DSC results showed a single Tg at 98°C for levan produced from sucrose and 206 °C for levan from date syrup.

Keywords: Date syrup, Fermentation, Levan, Microbacteriumlaevaniformans

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
523 Intelligent Automatic Generation Control of Two Area Interconnected Power System using Hybrid Neuro Fuzzy Controller

Authors: Sathans, A. Swarup

Abstract:

This paper presents the development and application of an adaptive neuro fuzzy inference system (ANFIS) based intelligent hybrid neuro fuzzy controller for automatic generation control (AGC) of two-area interconnected thermal power system with reheat non linearity. The dynamic response of the system has been studied for 1% step load perturbation in area-1. The performance of the proposed neuro fuzzy controller is compared against conventional proportional-integral (PI) controller, state feedback linear quadratic regulator (LQR) controller and fuzzy gain scheduled proportionalintegral (FGSPI) controller. Comparative analysis demonstrates that the proposed intelligent neuro fuzzy controller is the most effective of all in improving the transients of frequency and tie-line power deviations against small step load disturbances. Simulations have been performed using Matlab®.

Keywords: Automatic generation control, ANFIS, LQR, Hybrid neuro fuzzy controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
522 Effect of High-Heeled Shoes on Gait: A Micro-Electro-Mechanical-Systems Based Approach

Authors: Harun Sumbul, Orhan Ozyurt

Abstract:

The accelerations generated by the shoes in the body should be known in order to prevent balance problems, degradation of body shape and to spend less energy. In this study, it is aimed to investigate the effects of the shoe heel height on the human body. The working group has been created as five women (range 27-32 years) with different characteristics and five shoes with different heel heights (1, 3.5, 5, 7 and 9 cm). Individuals in the study group wore shoes and walked along a 20-meter racecourse. The accelerations created by the shoes are measured in three axes (30.270 accelerometric data) and analyzed. Results show us that; while walking with high-heeled shoes, the foot is lifted more; in this case, more effort has been spent. So, more weight has occurred at ankles and joints. Since high-heeled shoes cause greater acceleration, women wearing high-heeled shoes tend to pay more attention when taking a step. As a result, for foot and body health, shoe heel must be designed to absorb the reaction from the ground. High heels disrupt the structure of the foot and it is damaging the body shape. In this respect, this study is considered to be a remarkable method to find of effect of high-heeled shoes on gait by using accelerometer in the literature.

Keywords: Acceleration, sensor, gait analysis, high shoe heel, micro-electro-mechanical-systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
521 Reliable One-Dimensional Model of Two-Dimensional Insulated Oval Duct Considering Heat Radiation

Authors: King-Leung Wong, Wen-Lih Chen, Yu-feng Chang

Abstract:

The reliable results of an insulated oval duct considering heat radiation are obtained basing on accurate oval perimeter obtained by integral method as well as one-dimensional Plane Wedge Thermal Resistance (PWTR) model. This is an extension study of former paper of insulated oval duct neglecting heat radiation. It is found that in the practical situations with long-short-axes ratio a/b <= 5/1, heat transfer rate errors are within 1.2 % by comparing with accurate two-dimensional numerical solutions for most practical dimensionless insulated thickness (t/R2 <= 0.5). On the contrary, neglecting the heat radiation effect is likely to produce very big heat transfer rate errors of non-insulated (E>43% at t/R2=0) and thin-insulated (E>4.5% while t/R2<= 0.1) oval ducts in situations of ambient air with lower external convection heat coefficients and larger surface emissivity.

Keywords: Heat convection, heat radiation, oval duct, PWTR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
520 A User Friendly Tool for Performance Evaluation of Different Reference Evapotranspiration Methods

Authors: Vijay Shankar

Abstract:

Evapotranspiration (ET) is a major component of the hydrologic cycle and its accurate estimation is essential for hydrological studies. In past, various estimation methods have been developed for different climatological data, and the accuracy of these methods varies with climatic conditions. Reference crop evapotranspiration (ET0) is a key variable in procedures established for estimating evapotranspiration rates of agricultural crops. Values of ET0 are used with crop coefficients for many aspects of irrigation and water resources planning and management. Numerous methods are used for estimating ET0. As per internationally accepted procedures outlined in the United Nations Food and Agriculture Organization-s Irrigation and Drainage Paper No. 56(FAO-56), use of Penman-Monteith equation is recommended for computing ET0 from ground based climatological observations. In the present study, seven methods have been selected for performance evaluation. User friendly software has been developed using programming language visual basic. The visual basic has ability to create graphical environment using less coding. For given data availability the developed software estimates reference evapotranspiration for any given area and period for which data is available. The accuracy of the software has been checked by the examples given in FAO-56.The developed software is a user friendly tool for estimating ET0 under different data availability and climatic conditions.

Keywords: Crop coefficient, Crop evapotranspiration, Field moisture, Irrigation Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
519 Air flow and Heat Transfer Modeling of an Axial Flux Permanent Magnet Generator

Authors: Airoldi G., Bumby J. R., Dominy C., G.L. Ingram, Lim C. H., Mahkamov K., N. L. Brown, A. Mebarki, M. Shanel

Abstract:

Axial Flux Permanent Magnet (AFPM) Machines require effective cooling due to their high power density. The detrimental effects of overheating such as degradation of the insulation materials, magnets demagnetization, and increase of Joule losses are well known. This paper describes the CFD simulations performed on a test rig model of an air cooled Axial Flux Permanent Magnet (AFPM) generator built at Durham University to identify the temperatures and heat transfer coefficient on the stator. The Reynolds Averaged Navier-Stokes and the Energy equations are solved and the flow pattern and heat transfer developing inside the machine are described. The Nusselt number on the stator surfaces has been found. The dependency of the heat transfer on the flow field is described temperature field obtained. Tests on an experimental are undergoing in order to validate the CFD results.

Keywords: Axial flux permanent magnet machines, thermal modeling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
518 Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation

Authors: Q. J. Yang

Abstract:

This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied.

Keywords: Pad footing, hilly formation, stability, block works.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
517 Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4442
516 The Effection of Different Culturing Proportion of Deep Sea Water(DSW) to Surface Sea Water(SSW) in Reductive Ability and Phenolic Compositions of Sargassum Cristaefolium

Authors: H. L. Ku, K. C. Yang, S. Y. Jhou, S. C. Lee, C. S. Lin

Abstract:

Characterized as rich mineral substances, low temperature, few bacteria, and stability with numerous implementation aspects on aquaculture, food, drinking, and leisure, the deep sea water (DSW) development has become a new industry in the world. It has been report that marine algae contain various biologically active compounds. This research focued on the affections in cultivating Sagrassum cristaefolium with different concentration of deep sea water(DSW) and surface sea water(SSW). After two and four weeks, the total phenolic contents were compared in Sagrassum cristaefolium culturing with different ways, and the reductive activity of them was also be tried with potassium ferricyanide. Those fresh seaweeds were dried with oven and were ground to powder. Progressively, the marine algae we cultured was extracted by water under the condition with heating them at 90Ôäâ for 1hr.The total phenolic contents were be executed using Folin–Ciocalteu method. The results were explaining as follows: the highest total phenolic contents and the best reductive ability of all could be observed on the 1/4 proportion of DSW to SSW culturing in two weeks. Furthermore, the 1/2 proportion of DSW to SSW also showed good reductive ability and plentiful phenolic compositions. Finally, we confirmed that difference proportion of DSW and SSW is the major point relating to ether the total phenolic components or the reductive ability in the Sagrassum cristaefolium. In the future, we will use this way to mass production the marine algae or other micro algae on industry applications.

Keywords: deep sea water(DSW), surface sea water(SSW), phenolic contents, reductive ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
515 Identifying Dry Years by Using the Dependable Rainfall Index and Its Effects on the Olive Crop in Roudbar, Gilan, South Western of Caspian Sea

Authors: Bahman Ramezani Gourabi

Abstract:

Drought is one of the most important natural disasters which is probable to occur in all regions with completely different climates and in addition to causing death. It results in many economic losses and social consequences. For this reason. Studying the effects and losses caused by drought which include limitation or shortage of agricultural and drinking water resources. Decreased rainfall and increased evapotranspiration. Limited plant growth and decreased agricultural products. Especially those of dry-farming. Lower levels of surface and ground waters and increased immigrations. Etc. in the country is statistical period (1988-2007) for six stations in Roudbar town were used for statistical analysis and calculating humid and dry years. The dependable rainfall index (DRI) was the main method used in this research. Results showed that during the said statistical period and also during the years 1996-1998 and 2007. more than half of the stations had faced drought. With consideration of the conducted studies. Drawing diagrams and comparing the available data with those of dry and humid years it was found that drought affected agricultural products (e.g.olive) in a way that during the year 1996 1996 drought. Olive groves of Roudbar suffered the greatest damages. Whereupon about 70% of the crops were lost.

Keywords: Dependable rainfall, drought, annual rainfall, roudbar, olive, gilan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
514 Techno-Economics Study to Select Optimum Desalination Plant for Asalouyeh Combined Cycle Power Plant in Iran

Authors: Z. Gomar, H. Heidary, M. Davoudi

Abstract:

This research deals with techno economic analysis to select the most economic desalination method for Asalouyeh combined cycle power plant . Due to lack of fresh water, desalination of sea water is necessary to provide required DM water of Power Plant. The most common desalination methods are RO, MSF, MED, and MED–TVC. In this research, methods of RO, MED, and MED– TVC have been compared. Simulation results show that recovery of heat of exhaust gas of main stack is optimum case for providing DM water required for injected steam of MED desalination. This subject is very important because of improving thermal efficiency of power plant using extra heat recovery. Also, it has been shown that by adding 3 rows of finned tube to de-aerator evaporator, which is very simple and low cost, required steam for generating 5200 m3/day of desalinated water is obtainable.

Keywords: Desalination, MED, thermodynamic simulation, combined cycle power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
513 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200oC. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200oC. Tensile strength of cast 310S stainless steel was 9 MPa at 1200oC, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900oC. Elongation also increased with temperature decreased. Microstructure observation revealed that s phase was precipitated along the grain boundary and within the matrix over 1200oC, which is detrimental to high temperature elongation.

Keywords: Stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3242
512 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: Effective cooling, numerical modeling, photovoltaic cell, triangular ribs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
511 Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows

Authors: H.Y. Lai, S. C. Chang, W. L. Chen

Abstract:

The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.

Keywords: Heat transfer, lattice Boltzmann method, turbulence, wavy channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
510 Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

Authors: R.Mohamad Idris, A.Khairuddin, M.W.Mustafa

Abstract:

In this paper, a novel method using Bees Algorithm is proposed to determine the optimal allocation of FACTS devices for maximizing the Available Transfer Capability (ATC) of power transactions between source and sink areas in the deregulated power system. The algorithm simultaneously searches the FACTS location, FACTS parameters and FACTS types. Two types of FACTS are simulated in this study namely Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC). A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. The results clearly indicate that the introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Bees Algorithm can be efficiently used for this kind of nonlinear integer optimization.

Keywords: ATC, Bees Algorithm, TCSC, SVC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3146
509 A Simple Affymetrix Ratio-transformation Method Yields Comparable Expression Level Quantifications with cDNA Data

Authors: Chintanu K. Sarmah, Sandhya Samarasinghe, Don Kulasiri, Daniel Catchpoole

Abstract:

Gene expression profiling is rapidly evolving into a powerful technique for investigating tumor malignancies. The researchers are overwhelmed with the microarray-based platforms and methods that confer them the freedom to conduct large-scale gene expression profiling measurements. Simultaneously, investigations into cross-platform integration methods have started gaining momentum due to their underlying potential to help comprehend a myriad of broad biological issues in tumor diagnosis, prognosis, and therapy. However, comparing results from different platforms remains to be a challenging task as various inherent technical differences exist between the microarray platforms. In this paper, we explain a simple ratio-transformation method, which can provide some common ground for cDNA and Affymetrix platform towards cross-platform integration. The method is based on the characteristic data attributes of Affymetrix- and cDNA- platform. In the work, we considered seven childhood leukemia patients and their gene expression levels in either platform. With a dataset of 822 differentially expressed genes from both these platforms, we carried out a specific ratio-treatment to Affymetrix data, which subsequently showed an improvement in the relationship with the cDNA data.

Keywords: Gene expression profiling, microarray, cDNA, Affymetrix, childhood leukaemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
508 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control

Authors: Arnab Majumdar, Sanjoy Sadhukhan

Abstract:

Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.

Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
507 Experimental Studies on the Combustion and Emission Characteristics of a Diesel Engine Fuelled with Used Cooking Oil Methyl Esterand its Diesel Blends

Authors: G Lakshmi Narayana Rao, S Sampath, K Rajagopal

Abstract:

Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analysed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution.

Keywords: Combustion characteristics, diesel engine, emission characteristics, used cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
506 Performance Evaluation of an Inventive CO2 Gas Separation Inorganic Ceramic Membrane

Authors: Ngozi Nwogu, Mohammed Kajama, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The tasks to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper, therefore, evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: Carbon dioxide, gas separation, inorganic ceramic membrane & perm selectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
505 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.

Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
504 Control of Braking Force under Loaded and Empty Conditions on Two Wheeler

Authors: M. S. Manikandan, K. V. Nithish Kumar, M. Krishnamoorthi, V. Ganesh

Abstract:

The Automobile Braking System has a crucial role for safety of the passenger and riding quality of the vehicle. The braking force mainly depends on normal reaction on the wheel and the co-efficient of friction between the tire and the road surface. Whenever a vehicle is loaded, the normal reaction on the rear wheel is increased. Thus the amount of braking force required to halt the vehicle with minimum stopping distance, is based on the pillion load on the vehicle. In this work, in order to vary the braking force in two wheelers, the mechanical leverage which operates the master cylinder is varied based on the pillion load. Thus the amount of braking force developed between ground and tire is varied. This optimum braking force on the disc brake helps in attaining the minimum vehicle stopping distance. In addition to that, it also helps in preventing sliding. Thus the system results in reducing the stopping distance of the two wheelers and providing a better braking efficiency than the conventional braking system.

Keywords: Braking force, Master cylinder, Mechanical leverage, Minimum stopping distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6174
503 Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity

Authors: Bouchmel Mliki, Chaouki Ali, Mohamed Ammar Abbassi

Abstract:

In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (Ra = 103−106), nanoparticle volume concentration (f = 0-0.04) and Hartmann number (Ha = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at Ra = 106 more than other Raleigh numbers, as the least effect is observed at Ra = 103. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers.

Keywords: Heat transfer, linearly/sinusoidally heated, Lattice Boltzmann Method, natural convection, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
502 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds

Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed

Abstract:

The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.

Keywords: Enhancing heat transfer, metal foam, ultrasound, acoustic streaming, laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
501 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, N. Tugrul, S. Piskin

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be used as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame retardant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2·(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2·(OH)6 : H3BO3). After the zinc borate synthesis, the products were analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: Borate, ultrasonic method, zinc borate, zinc borate synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048