In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.<\/p>\r\n","references":"[1]\tJ. J. Michael and S. Iniyan, \u201cPerformance of copper oxide\/water nanofluid in a flat plate solar water heater under natural and forced circulations,\u201d Energy Conversion & Management, vol. 95, pp. 160\u2013169, 2015.\r\n[2]\tJ. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 4th Ed., John Wiley & Sons Inc., Hoboken, 2013.\r\n[3]\tZ. Xu and C. Kleinstreuer, \u201cConcentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating,\u201d Energy Conversion & Management, vol. 87, pp. 504\u2013512, 2014.\r\n[4]\tV. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov and M. Z. Shvarts, \u201cConcentrator PV modules and solar cells for TPV systems,\u201d Solar Energy Materials & Solar Cells, vol. 84, pp. 3\u201317, no.1-4, 2004.\r\n[5]\tM. Li, X. Ji, G. Li, S. Wei, Y. Li, and F. Shi, \u201cPerformance study of solar cell arrays based on a Trough Concentrating Photovoltaic\/Thermal system,\u201d Applied Energy, vol. 88, no. 9, pp. 3218\u20133227, 2011.\r\n[6]\tA. Royne, \u201cCooling devices for densely packed, high concentration PV arrays,\u201d Master thesis, University of Sydney, 2005.\r\n[7]\tY. Gao, H. Huang, Y. Su, and S. B. Riffat, \u201cA parametric study of characteristics of concentrating PV modules,\u201d International Journal of Low-Carbon Technology, vol. 5, pp. 57\u201362, 2010.\r\n[8]\tS. Agrawal and G. N. Tiwari, \u201cEnergy and exergy analysis of hybrid micro-channel photovoltaic thermal module,\u201d Solar Energy, vol. 85, no. 2, pp. 356\u2013370, 2011.\r\n[9]\tA. Royne, C. J. Dey, and D. R. Mills, \u201cCooling of photovoltaic cells under concentrated illumination: A critical review,\u201d Solar Energy Materials and Solar Cells, vol. 86, no.4, pp. 451\u2013483, 2005.\r\n[10]\tE. Chaniotakis, \u201cModelling and Analysis of Water Cooled Photovoltaics,\u201d Master thesis, University of Strathclyde, 2001.\r\n[11]\tM. Rahimi, E. Karimi, M. Asadi, and P. Valeh-e-Sheyda, \u201cHeat transfer augmentation in a hybrid microchannel solar cell,\u201d International Communications in Heat and Mass Transfer, vol. 43, pp. 131\u2013137, 2013.\r\n[12]\tS. Riera, J. Barrau, M. Omri, L. G. Fr\u00e9chette, and J. I. Rosell, \u201cStepwise varying width microchannel cooling device for uniform wall temperature: Experimental and numerical study,\u201d Applied Thermal Engineering, vol. 78, pp. 30\u201338, 2015.\r\n[13]\tF. Al-Amri and T. K. Mallick, \u201cAlleviating operating temperature of concentration solar cell by air active cooling and surface radiation,\u201d Applied Thermal Engineering, vol. 59, no. 1\u20132, pp. 348\u2013354, 2013.\r\n[14]\tK. S. Reddy, S. Lokeswaran, P. Agarwal, and T. K. Mallick, \u201cNumerical Investigation of Micro-channel based Active Module Cooling for Solar CPV System,\u201d Energy Procedia, vol. 54, pp. 400\u2013416, 2014.\r\n[15]\tB. Ramos-Alvarado, P. Li, H. Liu, and A. Hernandez-Guerrero, \u201cCFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells,\u201d Applied Thermal Engineering, vol. 31, no. 14\u201315, pp. 2494\u20132507, 2011.\r\n[16]\tK. Yang and C. Zuo, \u201cA novel multi-layer manifold microchannel cooling system for concentrating photovoltaic cells,\u201d Energy Conversion & Management, vol. 89, pp. 214\u2013221, 2015.\r\n[17]\tG. L. Jin, M. Yusof, H. Othman, H. Ruslan, and K. Sopian, \u201cPhotovoltaic Thermal (PV\/T) Water Collector Experiment Study,\u201d Proc. 7th Int. Conf. Renew. Energy Sources, Malaysia, pp. 117\u2013124, 2013.\r\n[18]\tE. Erdil, M. Ilkan, and F. Egelioglu, \u201cAn experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system,\u201d Energy, vol. 33, no. 8, pp. 1241\u20131245, 2008.\r\n[19]\tM. Abdelrahman, A. Eliwa and O.E. Abdellatif, \u201cExperimental Investigation of Different Cooling Methods for Photovoltaic Module,\u201d 11th Int. Energy Conversion Engineering Conference, San Jos\u00e9, July 14-17, 2013.\r\n[20]\tJ. Zhao, Y. Song, W.-H. Lam, W. Liu, Y. Liu, Y. Zhang, and D. Wang, \u201cSolar radiation transfer and performance analysis of an optimum photovoltaic\/thermal system,\u201d Energy Conversion &. Management, vol. 52, no. 2, pp. 1343\u20131353, 2011.\r\n[21]\tA. Ibrahim, M.Y. Othman, M.H. Ruslan, M.A. Alghoul, M. Yahya, A. Zaharim, and K. Sopian, \u201cPerformance of photovoltaic thermal collector (PVT) with different absorbers design,\u201d WSEAS Trans. Environ. Dev., vol. 5, no. 3, pp. 321\u2013330, 2009.\r\n[22]\tT. T. Chow, \u201cPerformance analysis of photovoltaic-thermal collector by explicit dynamic model,\u201d Solar Energy, vol. 75, no. 2, pp. 143\u2013152, 2003.\r\n[23]\tH. G. Teo, P. S. Lee, and M. N. A. Hawlader, \u201cAn active cooling system for photovoltaic modules,\u201d Applied Energy, vol. 90, no. 1, pp. 309\u2013315, 2012.\r\n[24]\tO. Rejeb, H. Dhaou and A. Jemni. \u201cParameters effect analysis of a photovoltaic thermal collector: case study for climatic conditions of Monastir, Tunisia.\u201d Energy Conversion & Management; vol. 89, pp.409\u2013419, 2015.\r\n[25]\tA. A. B. Baloch, H. M. S. Bahaidarah, P. Gandhidasan and F. A. Al-Sulaiman, \u201cExperimental and numerical performance analysis of a converging channel heat exchanger for PV cooling,\u201d Energy Conversion & Management, vol. 103, pp.14-27, 2015.\r\n[26]\tM. El Amine Slimani, M. Amirat, I. Kurucz, S. Bahria, A. Hamidat and W. B. Chaouch ,\u201d A detailed thermal-electrical model of three photovoltaic\/thermal (PV\/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions,\u201d Energy Conversion & Management, vol. 133, pp.458-476, 2017.\r\n[27]\tG. Notton, C. Cristofari, M. Mattei and P. Poggi, \u201cModelling of adouble-glass photovoltaic module using finite differences.\u201d Applied Thermal Engineering, vol. 25, pp.2854\u20132877, 2005.\r\n[28]\tM. U. Siddiqui, A. F. M. Arif, L. Kelley and S. Dubowsky. \u201cThree-dimensional thermal modeling of a photovoltaic module under varying conditions,\u201d Solar Energy, vol.86, no.9, pp.2620-2631, 2012.\r\n[29]\tJ. Zhou, Q. Yi, Y. Wang and Z. Ye, \u201cTemperature distribution of photovoltaic module based on finite element simulation,\u201d Solar Energy, vol.111, pp.97\u2013103, 2015.\r\n[30]\tA. Radwan, M. Ahmed and S. Ookawara, \u201dPerformance of concentrated photovoltaic cells using various microchannel heat sink designs\u201d, Proc. of the ASME 2016 10th Int. Conf. on Energy Sustainability, Charlotte (USA), Paper No. ES2016-59411, pp. V001T08A005; 10 pages, 2016. ","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 139, 2018"}