Search results for: thermal vibration.
364 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods
Authors: M. Ghobeiti-Hasab
Abstract:
Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and solgel auto-combustion methods were 1300°C and 1000°C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Srferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.
Keywords: Sr-ferrite, Sol-gel, Magnetic properties, Calcination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476363 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid
Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari
Abstract:
Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010362 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings
Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu
Abstract:
Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. “IEQ calculator” is easy to use and it preliminarily illustrates the overall indoor environmental quality on the spot. Users simply input indoor parameters such as temperature, number of people and windows are opened or closed for the mobile application to calculate the scores in four areas: the comforts of temperature, brightness, noise and indoor air quality. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.
Keywords: Calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424361 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.
Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460360 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.
Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918359 PIIN Suppression Using Random Diagonal Code for Spectral Amplitude Coding Optical CDMA System
Authors: Hilal Adnan Fadhil, Syed Alwei, R. Badlishah Ahmad
Abstract:
A new code for spectral-amplitude coding optical code-division multiple-access system is proposed called Random diagonal (RD) code. This code is constructed using code segment and data segment. One of the important properties of this code is that the cross correlation at data segment is always zero, which means that Phase Intensity Induced Noise (PIIN) is reduced. For the performance analysis, the effects of phase-induced intensity noise, shot noise, and thermal noise are considered simultaneously. Bit-error rate (BER) performance is compared with Hadamard and Modified Frequency Hopping (MFH) codes. It is shown that the system using this new code matrices not only suppress PIIN, but also allows larger number of active users compare with other codes. Simulation results shown that using point to point transmission with three encoded channels, RD code has better BER performance than other codes, also its found that at 0 dbm PIIN noise are 10-10 and 10-11 for RD and MFH respectively.Keywords: OCDMA, MFH, PIIN, and BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798358 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure
Authors: T. T. Naas, Y. Lasbet, C. Kezrane
Abstract:
The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.
Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233357 Quantitative Changes in Biofilms of a Seawater Tubular Heat Exchanger Subjected to Electromagnetic Fields Treatment
Authors: Sergio Garcia, Alfredo Trueba, Luis M. Vega, Ernesto Madariaga
Abstract:
Biofilms adhesion is one of the more important cost of industries plants on wide world, which use to water for cooling heat exchangers or are in contact with water. This study evaluated the effect of Electromagnetic Fields on biofilms in tubular heat exchangers using seawater cooling. The results showed an up to 40% reduction of the biofilm thickness compared to the untreated control tubes. The presence of organic matter was reduced by 75%, the inorganic mater was reduced by 87%, and 53% of the dissolved solids were eliminated. The biofilm thermal conductivity in the treated tube was reduced by 53% as compared to the control tube. The hardness in the effluent during the experimental period was decreased by 18% in the treated tubes compared with control tubes. Our results show that the electromagnetic fields treatment has a great potential in the process of removing biofilms in heat exchanger.Keywords: Biofilm, heat exchanger, electromagnetic fields, seawater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662356 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth
Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie
Abstract:
Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.
Keywords: Spent bleaching earth, Regeneration, Dye removal, Thermodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949355 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations
Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour
Abstract:
In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.Keywords: Deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161354 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.
Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3477353 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750oC analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.
Keywords: Carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496352 Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure
Authors: A. Karimipour, M. Afrand, M. Akbari, M.R. Safaei
Abstract:
Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.
Keywords: Mixed convection, inclined driven cavity, Richardson number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878351 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR
Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu
Abstract:
Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.
Keywords: Competitive adsorption, nuclear magnetic resonance, wettability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739350 Characterization of the Energy Band Diagram of Fabricated SnO2/CdS/CdTe Thin Film Solar Cells
Authors: Rasha A. Abdullah, Mohammed. A. Razooqi, Adwan N. H. Al-Ajili
Abstract:
A SnO2/CdS/CdTe heterojunction was fabricated by thermal evaporation technique. The fabricated cells were annealed at 573K for periods of 60, 120 and 180 minutes. The structural properties of the solar cells have been studied by using X-ray diffraction. Capacitance- voltage measurements were studied for the as-prepared and annealed cells at a frequency of 102 Hz. The capacitance- voltage measurements indicated that these cells are abrupt. The capacitance decreases with increasing annealing time. The zero bias depletion region width and the carrier concentration increased with increasing annealing time. The carrier transport mechanism for the CdS/CdTe heterojunction in dark is tunneling recombination. The ideality factor is 1.56 and the reverse bias saturation current is 9.6×10-10A. The energy band lineup for the n- CdS/p-CdTe heterojunction was investigated using current - voltage and capacitance - voltage characteristics.
Keywords: SnO2/CdS/CdTe heterojunction, XRD, C-V measurement, I-V measurement, energy band diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3721349 Effects of Global Warming on Climate Change in Udon Thani Province in the Period in 60 Surrounding Years (A.D.1951-2010)
Authors: T. Santiboon
Abstract:
This research were investigated, determined, and analyzed of the climate characteristically change in the provincial Udon Thani in the period of 60 surrounding years from 1951 to 2010 A.D. that it-s transferred to effects of climatologically data for determining global warming. Statistically significant were not found for the 60 years- data (R2<0.81). Statistically significant were found after adapted data followed as the Sun Spot cycle in 11 year periods, at the level 0.001 (R2= 1.00). These results indicate the Udon Thani-s weather are affected change; temperatures and evaporation were increased, but rainfall and number days of rainfall, cyclone storm, wind speed, and humidity, forest assessment were decreased. The effects of thermal energy from the sun radiation energy and human activities that they-re followed as the sunspot cycle are able to be predicted from the last to the future of the uniformitarian-s the climate change and global warming effect of the world.Keywords: Climate Change, Global Warming, Udon Thani Province Weather
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115348 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.
Keywords: Reinforcement, silicon carbide, fly ash, red mud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737347 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC
Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan
Abstract:
Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5967346 A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid
Authors: P.Kumar
Abstract:
Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach.Keywords: Heat transfer intensification, nanofluid, CFD, friction factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3808345 Non-Isothermal Kinetics of Crystallization and Phase Transformation of SiO2-Al2O3-P2O5-CaO-CaF Glass
Authors: Bogdan Il. Bogdanov, Plamen S. Pashev, Yancho H. Hristov, Dimitar P.Georgiev, Irena G. Markovska
Abstract:
The crystallization kinetics and phase transformation of SiO2.Al2O3.0,56P2O5.1,8CaO.0,56CaF2 glass have been investigated using differential thermal analysis (DTA), x-ray diffraction (XRD), and scanning electron microscopy (SEM). Glass samples were obtained by melting the glass mixture at 14500С/120 min. in platinum crucibles. The mixture were prepared from chemically pure reagents: SiO2, Al(OH)3, H3PO4, CaCO3 and CaF2. The non-isothermal kinetics of crystallization was studied by applying the DTA measurements carried out at various heating rates. The activation energies of crystallization and viscous flow were measured as 348,4 kJ.mol–1 and 479,7 kJ.mol–1 respectively. Value of Avrami parameter n ≈ 3 correspond to a three dimensional of crystal growth mechanism. The major crystalline phase determined by XRD analysis was fluorapatite (Ca(PO4)3F) and as the minor phases – fluormargarite (CaAl2(Al2SiO2)10F2) and vitlokite (Ca9P6O24). The resulting glass-ceramic has a homogeneous microstructure, composed of prismatic crystals, evenly distributed in glass phase.Keywords: glass-ceramic, crystallization, non-isothermalkinetics, Avrami parameter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952344 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate
Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim
Abstract:
The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.
Keywords: Micro grid, energy storage systems, ramp rate, control strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474343 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging
Authors: Chang Liu, John Nash, Stephen D. Prior
Abstract:
This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, The aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infra-red video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.Keywords: Unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953342 Experimental Investigation of Karanja Oil as a Fuel for Diesel Engine-Using Shell and Tube Heat Exchanger
Authors: Nabnit Panigrahi, M. K. Mohanty, S. K. Acharya, S. R Mishra, R. C. Mohanty
Abstract:
This paper presents experimental investigation carried out on an unmodified four stroke diesel engine running with preheated straight vegetable oil (SVO) of Karanja. The viscosity of straight karanja oil was reduced by preheating the oil up to 1600C under different load condition. The preheating was done with the help of a Shell and Tube heat exchanger equipment without using any external power source. The heat exchanger was designed in the lab and the heating source was by waste exhaust gas from engine. The experimental results data were analyzed by using 20% blends of svo of Karanja with 80% diesel by volume and 100% preheated svo of karanja for various parameters like specific fuel consumption, brake thermal efficiency and emission of exhaust gas like CO, CO2, HC and NOx. The results indicated that by using straight karanja oil, the emission parameter increases as compared to diesel but regarding engine performance it was found to be very close to that of diesel. All total it can be a replacement of diesel with a small efficiency drop.
Keywords: Karanja oil, Performance analysis, Shell &Tube heat exchanger, SVO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063341 Application of Smart Temperature Information Material for The Evaluation of Heat Storage Capacity and Insulation Capacity of Exterior Walls
Authors: Chih-Yuan Chang, Jin-Chiuan Chang, San-Shan Hung, Cheng-Jui Hsu
Abstract:
The heat storage capacity of concrete in building shells is a major reason for excessively large electricity consumption induced by indoor air conditioning. In this research, the previously developed Smart Temperature Information Material (STIM) is embedded in two groups of exterior wall specimens (the control group contains reinforced concrete exterior walls and the experimental group consists of tiled exterior walls). Long term temperature measurements within the concrete are taken by the embedded STIM. Temperature differences between the control group and the experimental group in walls facing the four cardinal directions (east, west, south, and north) are evaluated. This study aims to provide a basic reference for the design of exterior walls and the selection of heat insulation materials.
Keywords: building envelope, sensor, energy, thermal insulation, reinforced concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603340 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.Keywords: Nano reactive silica sand powder concrete, consolidation, compressive strength, normal curing, thermal accelerated curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377339 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics
Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi
Abstract:
Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.Keywords: Reactive rotational molding, free surface flows, simulation, smoothed particle hydrodynamics, surface tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079338 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay
Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney
Abstract:
Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.Keywords: Cylindrical turning, nickel superalloy, turning of overlay, weld overlay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931337 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials
Authors: Aman Patidar, Dipankar Sarkar, Manish Pal
Abstract:
Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.
Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910336 Manufacturing Process of a Novel Biomass Composite Inspired from Cellular Structure of Wood
Authors: Li Yongfeng, Liu Yixing, Li Jian, Li Jun
Abstract:
A novel biomass composite inspired from wood porous structure was manufactured by impregnating vinyl monomer into wood cellular structure under vacuum conditions, and initiating the monomer for in situ polymerization through a thermal treatment. The vacuum condition was studied, and the mechanical properties of the composite were also tested. SEM observation shows that polymer generated in the wood porous structure, and strongly interacted with wood matrix; and the polymer content increased with vacuum value increasing. FTIR indicates that polymer grafted onto wood matrix, resulting chemical complex between them. The rate of monomer loading increased with increasing vacuum value and time, accordance with rate of polymer loading. The compression strength and modulus of elasticity linearly increased with the increasing rate of polymer loading. Results indicate that the novel biomass composite possesses good mechanical properties capable of applying in the fields of construction, traffic and so forth.Keywords: Biomass composite, manufacture, vinyl monomer, wood cellular structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387335 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee
Abstract:
In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.Keywords: Automotive shredder residue, microwave treatment, chlorinated plastics, separation, heavy metals, Immobilization, separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084