Search results for: evidence based policing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11647

Search results for: evidence based policing

10267 Three-Level Converters based Generalized Unified Power Quality Conditioner

Authors: Bahr Eldin S. M, K. S. Rama Rao, N. Perumal

Abstract:

A generalized unified power quality conditioner (GUPQC) by using three single-phase three-level voltage source converters (VSCs) connected back-to-back through a common dc link is proposed in this paper as a new custom power device for a three-feeder distribution system. One of the converters is connected in shunt with one feeder for mitigation of current harmonics and reactive power compensation, while the other two VSCs are connected in series with the other two feeders to maintain the load voltage sinusoidal and at constant level. A new control scheme based on synchronous reference frame is proposed for series converters. The simulation analysis on compensation performance of GUPQC based on PSCAD/EMTDC is reported.

Keywords: Custom power device, generalized unified power quality conditioner, PSCAD/ETMDC, voltage source converter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
10266 A Study of Gaps in CBMIR Using Different Methods and Prospective

Authors: Pradeep Singh, Sukhwinder Singh, Gurjinder Kaur

Abstract:

In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.

Keywords: Classification, clustering, content-based image retrieval (CBIR), relevance feedback (RF), statistical similarity matching, support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
10265 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge

Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang

Abstract:

Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.

Keywords: Text classification, Text clustering, Text similarity, Wikipedia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
10264 Compiler-Based Architecture for Context Aware Frameworks

Authors: Hossein Nejati, Seyed H. Mirisaee, Gholam H. Dastghaibifard

Abstract:

Computers are being integrated in the various aspects of human every day life in different shapes and abilities. This fact has intensified a requirement for the software development technologies which is ability to be: 1) portable, 2) adaptable, and 3) simple to develop. This problem is also known as the Pervasive Computing Problem (PCP) which can be implemented in different ways, each has its own pros and cons and Context Oriented Programming (COP) is one of the methods to address the PCP. In this paper a design for a COP framework, a context aware framework, is presented which has eliminated weak points of a previous design based on interpreter languages, while introducing the compiler languages power in implementing these frameworks. The key point of this improvement is combining COP and Dependency Injection (DI) techniques. Both old and new frameworks are analyzed to show advantages and disadvantages. Finally a simulation of both designs is proposed to indicating that the practical results agree with the theoretical analysis while the new design runs almost 8 times faster.

Keywords: Dependency Injection, Compiler-based architecture, Context-Oriented Programming, COP, Pervasive ComputingProblem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
10263 A Study on the Average Information Ratio of Perfect Secret-Sharing Schemes for Access Structures Based On Bipartite Graphs

Authors: Hui-Chuan Lu

Abstract:

A perfect secret-sharing scheme is a method to distribute a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret and the joint share of participants in any unqualified subset is statistically independent of the secret. The collection of all qualified subsets is called the access structure of the perfect secret-sharing scheme. In a graph-based access structure, each vertex of a graph G represents a participant and each edge of G represents a minimal qualified subset. The average information ratio of a perfect secret-sharing scheme  realizing the access structure based on G is defined as AR = (Pv2V (G) H(v))/(|V (G)|H(s)), where s is the secret and v is the share of v, both are random variables from  and H is the Shannon entropy. The infimum of the average information ratio of all possible perfect secret-sharing schemes realizing a given access structure is called the optimal average information ratio of that access structure. Most known results about the optimal average information ratio give upper bounds or lower bounds on it. In this present structures based on bipartite graphs and determine the exact values of the optimal average information ratio of some infinite classes of them.

Keywords: secret-sharing scheme, average information ratio, star covering, core sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
10262 The Using of Rasch-Model in Validating the Arabic Version of Multiple Intelligence Development Assessment Scale (MIDAS)

Authors: Saher Ali Al-Sabbah, See Ching Mey, Ong Saw Lan

Abstract:

This article addresses the procedures to validate the Arabic version of Multiple Intelligence Development Assessment Scale (MIDAS). The content validity was examined based on the experts- judgments on the MIDAS-s items in the Arabic version. The content of eleven items in the Arabic version of MIDAS was modified to match the Arabic context. Then a translation from original English version of MIDAS into Arabic language was performed. The reliability of the Arabic MIDAS was calculated based on test and retest method and found to be 0.85 for the overall MIDAS and for the different subscales ranging between 0.78 - 0.87. The examination of construct validity for the overall Arabic MIDAS and its subscales was established by using Winsteps program version 6 based on Rasch model in order to fit the items into the Arabic context. The findings indicated that, the eight subscales in Arabic version of MIDAS scale have a unidimensionality, and the total number of kept items in the overall scale is 108 items.

Keywords: Rasch-Model, validation, multiple intelligence, and MIDAS scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
10261 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study

Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran

Abstract:

In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.

Keywords: Mean distance between failures, mileage based reliability, reliability target normalization, rolling stock reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
10260 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The root mean square errors (RMSE) between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: Neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
10259 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
10258 Personalization of Web Search Using Web Page Clustering Technique

Authors: Amol Bapuso Rajmane, Pradeep M. Patil, Prakash J. Kulkarni

Abstract:

The Information Retrieval community is facing the problem of effective representation of Web search results. When we organize web search results into clusters it becomes easy to the users to quickly browse through search results. The traditional search engines organize search results into clusters for ambiguous queries, representing each cluster for each meaning of the query. The clusters are obtained according to the topical similarity of the retrieved search results, but it is possible for results to be totally dissimilar and still correspond to the same meaning of the query. People search is also one of the most common tasks on the Web nowadays, but when a particular person’s name is queried the search engines return web pages which are related to different persons who have the same queried name. By placing the burden on the user of disambiguating and collecting pages relevant to a particular person, in this paper, we have developed an approach that clusters web pages based on the association of the web pages to the different people and clusters that are based on generic entity search.

Keywords: Entity resolution, information retrieval, graph based disambiguation, web people search, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
10257 Continuous Feature Adaptation for Non-Native Speech Recognition

Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern

Abstract:

The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation.

Keywords: speaker adaptation; environment adaptation; robust speech recognition; SVD; non-native speech recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
10256 Using Thinking Blocks to Encourage the Use of Higher Order Thinking Skills among Students When Solving Problems on Fractions

Authors: Abdul Halim Abdullah, Nur Liyana Zainal Abidin, Mahani Mokhtar

Abstract:

Problem-solving is an activity which can encourage students to use Higher Order Thinking Skills (HOTS). Learning fractions can be challenging for students since empirical evidence shows that students experience difficulties in solving the fraction problems. However, visual methods can help students to overcome the difficulties since the methods help students to make meaningful visual representations and link abstract concepts in Mathematics. Therefore, the purpose of this study was to investigate whether there were any changes in students’ HOTS at the four highest levels when learning the fractions by using Thinking Blocks. 54 students participated in a quasi-experiment using pre-tests and post-tests. Students were divided into two groups. The experimental group (n=32) received a treatment to improve the students’ HOTS and the other group acted as the control group (n=22) which used a traditional method. Data were analysed by using Mann-Whitney test. The results indicated that during post-test, students who used Thinking Blocks showed significant improvement in their HOTS level (p=0.000). In addition, the results of post-test also showed that the students’ performance improved significantly at the four highest levels of HOTS; namely, application (p=0.001), analyse (p=0.000), evaluate (p=0.000), and create (p=0.000). Therefore, it can be concluded that Thinking Blocks can effectively encourage students to use the four highest levels of HOTS which consequently enable them to solve fractions problems successfully.

Keywords: Thinking blocks, higher order thinking skills, fractions, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
10255 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories

Authors: Claudio Díaz, Mabel Ortiz

Abstract:

An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.

Keywords: Beliefs, Digital stories, Preservice teachers, Practicum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
10254 Grey Prediction Based Handoff Algorithm

Authors: Seyed Saeed Changiz Rezaei, Babak Hossein Khalaj

Abstract:

As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

Keywords: Cellular network, Grey prediction, Handoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
10253 DNA Computing for an Absolute 1-Center Problem: An Evolutionary Approach

Authors: Zuwairie Ibrahim, Yusei Tsuboi, Osamu Ono, Marzuki Khalid

Abstract:

Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science and mathematics. Thus, in this paper, the possibility of DNA-based computing to solve an absolute 1-center problem by molecular manipulations is presented. This is truly the first attempt to solve such a problem by DNA-based computing approach. Since, part of the procedures involve with shortest path computation, research works on DNA computing for shortest path Traveling Salesman Problem, in short, TSP are reviewed. These approaches are studied and only the appropriate one is adapted in designing the computation procedures. This DNA-based computation is designed in such a way that every path is encoded by oligonucleotides and the path-s length is directly proportional to the length of oligonucleotides. Using these properties, gel electrophoresis is performed in order to separate the respective DNA molecules according to their length. One expectation arise from this paper is that it is possible to verify the instance absolute 1-center problem using DNA computing by laboratory experiments.

Keywords: DNA computing, operation research, 1-center problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
10252 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3687
10251 The Effects of Electromagnetic Stirring on Microstructure and Properties of γ-TiAl Based Alloys Fabricated by Selective Laser Melting Technique

Authors: A. Ismaeel, C. S. Wang, D. S. Xu

Abstract:

The γ-TiAl based Ti-Al-Mn-Nb alloys were fabricated by selective laser melting (SLM) on the TC4 substrate. The microstructures of the alloys were investigated in detail. The results reveal that the alloy without electromagnetic stirring (EMS) consists of γ-TiAl phase with tetragonal structure and α2-Ti3Al phase with hcp structure, while the alloy with applied EMS consists of γ-TiAl, α2-Ti3Al and α-Ti with hcp structure, and the morphological structure of the alloy without EMS which exhibits near lamellar structure and the alloy with EMS shows duplex structure, the alloy without EMS shows some microcracks and pores while they are not observed in the alloy without EMS. The microhardness and wear resistance values decrease with applied EMS.

Keywords: Selective laser melting, γ-TiAl based alloys, microstructure, properties, electromagnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
10250 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.

Keywords: Clustering, method, algorithm, hierarchical, survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378
10249 Wavelet based Image Registration Technique for Matching Dental x-rays

Authors: P. Ramprasad, H. C. Nagaraj, M. K. Parasuram

Abstract:

Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two levels of affine transformation. Wavelet coefficients are correlated instead of gray values. Algorithm has been applied on number of pre and post RCT (Root canal treatment) periapical radiographs. Root Mean Square Error (RMSE) and Correlation coefficients (CC) are used for quantitative evaluation. Proposed technique outperforms conventional Multiresolution strategy based image registration technique and manual registration technique.

Keywords: Diagnostic imaging, geometric transformation, image registration, multiresolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
10248 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm

Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna

Abstract:

Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.

Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
10247 Fuzzy Based Particle Swarm Optimization Routing Technique for Load Balancing in Wireless Sensor Networks

Authors: S. Balaji, E. Golden Julie, M. Rajaram, Y. Harold Robinson

Abstract:

Network lifetime improvement and uncertainty in multiple systems are the issues of wireless sensor network routing. This paper presents fuzzy based particle swarm optimization routing technique to improve the network scalability. Significantly, in the cluster formation procedure, fuzzy based system is used to solve the uncertainty and network balancing. Cluster heads play an important role to reduce the energy consumption using particle swarm optimization algorithm, the cluster head sends its information along data packets to the heads with link. The simulation results show that the presented routing protocol can perform load balancing effectively and reduce the energy consumption of cluster heads.

Keywords: Wireless sensor networks, fuzzy logic, PSO, LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
10246 Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

Authors: Julio Molleda, Daniel F. García, Juan C. Granda, Francisco J. Suárez

Abstract:

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Keywords: Classification, Pattern Recognition, ProbabilisticReasoning, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
10245 A Design of an Augmented Reality Based Virtual Heritage Application

Authors: Stephen Barnes, Ian Mills, Frances Cleary

Abstract:

Augmented and Virtual Reality based applications offer many benefits for the heritage and tourism sector. This technology provides a platform to showcase the regions of interest to people without the need for them to be physically present, which has had a positive impact on enticing tourists to visit those locations. However, the technology also provides the opportunity to present historical artefacts in a form that accurately represents their original, intended appearance. Three sites of interest were identified in the Lingaun Valley in South East Ireland wherein virtual representations of site specific artefacts of interest were created via a multidisciplinary team encompassing archaeology, art history, 3D modelling, design and software development. The collated information has been presented to users via an Augmented Reality mobile based application that provides information in an engaging manner that encourages an interest in history as well as visits to the sites in the Lingaun Valley.

Keywords: Augmented Reality, Virtual Heritage, 3D modelling, archaeology, virtual representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
10244 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.

Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
10243 e/b-Learning Activities and High School Pedagogy

Authors: Rui Antunes

Abstract:

This article presents the implementation of several different e/b-Learning collaborative activities, used to improve the students learning process in an high school Polytechnic Institution. A new learning model arises, based on a combination between face-toface and distance leaning. Learning is now becoming centered with the development of collaborative activities, and its actors (teachers and students) have to be re-socialized to a new e/b-Learning paradigm. Measuring approaches are proposed for this model and results are presented, showing prospective correlation between students learning success and the use of online collaborative activities.

Keywords: e/b-Learning, Collaborative Learning, TeachingCommunities, Web-based Courseware

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
10242 Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering

Authors: S. S. Bhandari, N. Chakpitak, K. Meksamoot, T. Chandarasupsang

Abstract:

Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.

Keywords: CommonKADS, Knowledge Engineering, LifeCycle Management, Power Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
10241 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks

Authors: V. Revathi, J. Thaarrini, M. Venkob Rao

Abstract:

This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.

Keywords: Bottom ash, GGBS, alkali activation, paver block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4037
10240 Ranking Fuzzy Numbers Based on Lexicographical Ordering

Authors: B. Farhadinia

Abstract:

Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.

Keywords: Ranking fuzzy numbers, Lexicographical ordering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
10239 Context for Simplicity: A Basis for Context-aware Systems Based on the 3GPP Generic User Profile

Authors: Enrico Rukzio, George N. Prezerakos, Giovanni Cortese, Eleftherios Koutsoloukas, Sofia Kapellaki

Abstract:

The paper focuses on the area of context modeling with respect to the specification of context-aware systems supporting ubiquitous applications. The proposed approach, followed within the SIMPLICITY IST project, uses a high-level system ontology to derive context models for system components which consequently are mapped to the system's physical entities. For the definition of user and device-related context models in particular, the paper suggests a standard-based process consisting of an analysis phase using the Common Information Model (CIM) methodology followed by an implementation phase that defines 3GPP based components. The benefits of this approach are further depicted by preliminary examples of XML grammars defining profiles and components, component instances, coupled with descriptions of respective ubiquitous applications.

Keywords: 3GPP, context, context-awareness, context model, information model, user model, XML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8774
10238 The Content Based Objective Metrics for Video Quality Evaluation

Authors: Michal Mardiak, Jaroslav Polec

Abstract:

In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.

Keywords: Objective quality metrics, mutual information, region recognition, content based metrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506