Search results for: adaptive learning
1331 Reflective Thinking and Experiential Learning: A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities and Greater Integration of Student Profiles
Authors: P. Bogas
Abstract:
As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences resulted from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the students' response can be described as: students who reinforce the initial deep approach, students who maintain the initial deep approach level and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to a possible adoption of deep approaches to learning, since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding to the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself and, on the other hand, the additional effort that this practice required for some of the students.
Keywords: Experiential learning, higher education, marketing, mixed methods, reflective thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051330 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.
Keywords: Deep learning, skin cancer, image processing, melanoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401329 Practice, Observation, and Gender Effects on Students’ Entrepreneurial Skills Development When Teaching through Entrepreneurship Is Adopted: Case of University of Tunis El Manar
Authors: H. Chaker, T. Slama, N. Elyétim
Abstract:
This paper analyzes the effects of gender, affiliation, prior work experience, social work, and vicarious learning through family role models on entrepreneurial skills development by students when they followed the teaching through the entrepreneurship method in Tunisia. We suggest that these variables enhance the development of students’ entrepreneurial skills when combined with teaching through entrepreneurship. The article assesses the impact of these combinations by comparing their effects on the development of thirteen students’ entrepreneurial competencies, namely entrepreneurial mindset, core self-evaluation, entrepreneurial attitude, entrepreneurial knowledge, creativity, financial literacy, managing ambiguity, marshaling of resources, planning, teaching methods, entrepreneurial teachers, innovative employee, and entrepreneurial intention. We use a two-sample independent t-test to make the comparison, and the results indicate that, when combined with teaching through the entrepreneurship method, students with prior work experience developed better six entrepreneurial skills; students with social work developed better three entrepreneurial skills, men developed better four entrepreneurial skills than women. However, all students developed their entrepreneurial skills through this practical method regardless of their affiliation and their vicarious learning through family role models.
Keywords: Affiliation, entrepreneurial skills, gender, role models, social work, teaching through entrepreneurship, vicarious learning, work experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741328 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach
Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato
Abstract:
In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.Keywords: Constraint programming, Factors considered in scheduling, machine learning, scheduling system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14351327 Using Wiki for Enhancing the Knowledge Transfer to Newcomers: An Experience Report
Authors: H. O. Barbosa, A. C. R. da Silva, C. M. de Almeida, E. M. dos Santos, F. O. de Sousa, F. B. da S. Souza, F. B. da S. Souza, F. de O. Lima, L. H. Albuquerque, R. F. do Valle Cunha
Abstract:
Software development is intrinsic human-based knowledge-intensive. Due to globalization, software development has become a complex challenge and we usually face barriers related to knowledge management, team building, costly testing processes, especially in distributed settings. In this paper, we present the use of experimental studies to improve our knowledge management process using the Wiki system. According to the results, it was possible to identify learning preferences from our software projects leader team, organize and improve the learning experience of our Wiki, and facilitate collaboration by newcomers to improve Wiki with new contents available in the Wiki.
Keywords: Mobile products, knowledge management process, Wiki system, Global Software Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6581326 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators
Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean
Abstract:
In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.
Keywords: Asymptotic relative efficiency, non-linear rank-based, robust, rank estimates, variogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15851325 Investigating Iraqi EFL Undergraduates' Performance in the Production of Number Forms in English
Authors: Adnan Z. Mkhelif
Abstract:
The production of number forms in English tends to be problematic for Iraqi learners of English as a foreign language (EFL), even at the undergraduate level. To help better understand and consequently address this problem, it is important to identify its sources. This study aims at: (1) statistically analysing Iraqi EFL undergraduates' performance in the production of number forms in English; (2) classifying learners' errors in terms of their possible major causes; and (3) outlining some pedagogical recommendations relevant to the teaching of number forms in English. It is hypothesized in this study that (1) Iraqi EFL undergraduates still face problems in the production of number forms in English and (2) errors pertaining to the context of learning are more numerous than those attributable to the other possible causes. After reviewing the literature available on the topic, a written test comprising 50 items has been constructed and administered to a randomly chosen sample of 50 second-year college students from the Department of English, College of Education, Wasit University. The findings of the study showed that Iraqi EFL undergraduates still face problems in the production of number forms in English and that the possible major sources of learners’ errors can be arranged hierarchically in terms of the percentages of errors to which they can be ascribed as follows: (1) context of learning (50%), (2) intralingual transfer (37%), and (3) interlingual transfer (13%). It is hoped that the implications of the study findings will be beneficial to researchers, syllabus designers, as well as teachers of English as a foreign/second language.
Keywords: L2 morphology, L2 number forms, L2 vocabulary learning, productive knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6551324 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles
Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou
Abstract:
The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.
Keywords: Fault detection, feature selection, machine learning, predictive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811323 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment
Authors: Leon Pan
Abstract:
The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort on their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model—aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects, while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.
Keywords: Extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301322 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay
Authors: E. S. Gower, M. O. J. Hawksford
Abstract:
An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.Keywords: expectation-maximization, Pitman estimator, sparsedecomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19491321 Effective Online Staff Training: Is This Possible?
Authors: C. Rogerson, E. Scott
Abstract:
The purpose of this paper is to consider the introduction of online courses to replace the current classroom-based staff training. The current training is practical, and must be completed before access to the financial computer system is authorized. The long term objective is to measure the efficacy, effectiveness and efficiency of the training, and to establish whether a transfer of knowledge back to the workplace has occurred. This paper begins with an overview explaining the importance of staff training in an evolving, competitive business environment and defines the problem facing this particular organization. A summary of the literature review is followed by a brief discussion of the research methodology and objective. The implementation of the alpha version of the online course is then described. This paper may be of interest to those seeking insights into, or new theory regarding, practical interventions of online learning in the real world.
Keywords: Computer-based courses, e-learning, online training, workplace training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16801320 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.
Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12621319 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction
Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova
Abstract:
A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.
Keywords: Analogy-making, categorization, learning of categories, abstraction, hierarchical structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7801318 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams
Authors: Rochelle Elva
Abstract:
Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of the mastery of skills through learning. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them, to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy-Value Theory and Motivation Theory, to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected path to success, which continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were on average one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.
Keywords: Expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011317 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: Building detection, tree detection, matched filtering, multiscale, local maximum filtering, watershed segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5491316 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade
Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim
Abstract:
Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.
Keywords: Building envelope, machine learning, perforated metal, multi-factor optimization, façade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12241315 Malaysia Folk Literature in Early Childhood Education
Authors: F. P. Chew, Z. Ishak
Abstract:
Malay Folk Literature in early childhood education served as an important agent in child development that involved emotional, thinking and language aspects. Up to this moment not much research has been carried out in Malaysia particularly in the teaching and learning aspects nor has there been an effort to publish “big books." Hence this article will discuss the stance taken by university undergraduate students, teachers and parents in evaluating Malay Folk Literature in early childhood education to be used as big books. The data collated and analyzed were taken from 646 respondents comprising 347 undergraduates and 299 teachers. Results of the study indicated that Malay Folk Literature can be absorbed into teaching and learning for early childhood with a mean of 4.25 while it can be in big books with a mean of 4.14. Meanwhile the highest mean value required for placing Malay Folk Literature genre as big books in early childhood education rests on exemplary stories for undergraduates with mean of 4.47; animal fables for teachers with a mean of 4.38. The lowest mean value of 3.57 is given to lipurlara stories. The most popular Malay Folk Literature found suitable for early children is Sang Kancil and the Crocodile, followed by Bawang Putih Bawang Merah. Pak Padir, Legends of Mahsuri, Origin of Malacca, and Origin of Rainbow are among the popular stories as well. Overall the undergraduates show a positive attitude toward all the items compared to teachers. The t-test analysis has revealed a non significant relationship between the undergraduate students and teachers with all the items for the teaching and learning of Malay Folk Literature.Keywords: Big Book, Early Childhood Education, Malay FolkLiterature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43031314 Overhead Estimation over Capacity of Mobile WiMAX
Authors: Saeed AL-Rashdy, Qing Guo
Abstract:
The IEEE802.16 standard which has emerged as Broadband Wireless Access (BWA) technology, promises to deliver high data rate over large areas to a large number of subscribers in the near future. This paper analyze the effect of overheads over capacity of downlink (DL) of orthogonal frequency division multiple access (OFDMA)–based on the IEEE802.16e mobile WiMAX system with and without overheads. The analysis focuses in particular on the impact of Adaptive Modulation and Coding (AMC) as well as deriving an algorithm to determine the maximum numbers of subscribers that each specific WiMAX sector may support. An analytical study of the WiMAX propagation channel by using Cost- 231 Hata Model is presented. Numerical results and discussion estimated by using Matlab to simulate the algorithm for different multi-users parameters.Keywords: BWA, mobile WiMAX, capacity, AMC , overheads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20831313 To Design Holistic Health Service Systems on the Internet
Authors: Åsa Smedberg
Abstract:
There are different kinds of online systems on the Internet for people who need support and develop new knowledge. Online communities and Ask the Expert systems are two such systems. In the health care area, the number of users of these systems has increased at a rapid pace. Interactions with medical trained experts take place online, and people with concerns about similar health problems come together to share experiences and advice. The systems are also used as storages and browsed for health information. Over the years, studies have been conducted of the usage of the different systems. However, in what ways the systems can be used together to enhance learning has not been explored. This paper presents results from a study of online health-communities and an Ask the Expert system for people who suffer from overweight. Differences and similarities in regards to posted issues and replies are discussed, and suggestions for a new holistic design of the two systems are presented.
Keywords: Learning, Ask the Expert, online community, healthcare, holistic, overweight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14291312 Housing Rehabilitation as a Means of Urban Regeneration and Population Integration
Authors: Andreas L. Savvides
Abstract:
The proposed paper examines strategies whose aim is to counter the all too often sighted process of abandonment that characterizes contemporary cities. The city of Nicosia in Cyprus is used as an indicative case study, whereby several recent projects are presented as capitalizing on traditional cultural assets to revive the downtown. The reuse of existing building stock as museums, performing arts centers and theaters but also as in the form of various housing typologies is geared to strengthen the ranks of local residents and to spur economic growth. Unlike the examples from the 1960s, the architecture of more recent adaptive reuse for urban regeneration seems to be geared in reinforcing a connection to the city where the buildings often reflect the characteristics of their urban context.Keywords: Public Housing, Building Rehabilitation, Urban Regeneration, Population Integration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18631311 Echo State Networks for Arabic Phoneme Recognition
Authors: Nadia Hmad, Tony Allen
Abstract:
This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.
Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24091310 A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)
Authors: Aqeel S. Jaber, Abu Zaharin Ahmad, Ahmed N. Abdalla
Abstract:
The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.Keywords: Load frequency control, PSO, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271309 Realtime Lip Contour Tracking For Audio-Visual Speech Recognition Applications
Authors: Mehran Yazdi, Mehdi Seyfi, Amirhossein Rafati, Meghdad Asadi
Abstract:
Detection and tracking of the lip contour is an important issue in speechreading. While there are solutions for lip tracking once a good contour initialization in the first frame is available, the problem of finding such a good initialization is not yet solved automatically, but done manually. We have developed a new tracking solution for lip contour detection using only few landmarks (15 to 25) and applying the well known Active Shape Models (ASM). The proposed method is a new LMS-like adaptive scheme based on an Auto regressive (AR) model that has been fit on the landmark variations in successive video frames. Moreover, we propose an extra motion compensation model to address more general cases in lip tracking. Computer simulations demonstrate a fair match between the true and the estimated spatial pixels. Significant improvements related to the well known LMS approach has been obtained via a defined Frobenius norm index.Keywords: Lip contour, Tracking, LMS-Like
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961308 The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool
Authors: Justin D. Olmanson, Katrina S. Kennett, Bill Cope
Abstract:
In educational technology, the idea of innovation is usually tethered to contemporary technological inventions and emerging technologies. Yet, using long-known technologies in ways that are pedagogically or experimentially new can reposition them as emerging educational technologies. In this study we explore how a subtle pivot in pedagogical thinking led to an innovative education technology. We describe the design and implementation of an online writing tool that scaffolds students in the evaluation of their own informational texts. We think about how pathways to innovation can emerge from pivots, namely a leveraging of longstanding practices in novel ways has the potential to cultivate new opportunities for learning. We first unpack Infowriter in terms of its design, then we describe some results of a study in which we implemented an intervention which included our designed application.Keywords: Design, innovation, learning, technology, writing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16931307 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8261306 Fuzzy Fingerprint Vault using Multiple Polynomials
Authors: Daesung Moon, Woo-Yong Choi, Kiyoung Moon
Abstract:
Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.
Keywords: Fuzzy vault, fingerprint recognition multiple polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471305 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.
Keywords: Limit cycles, Nonlinear dynamical system, Real time obstacle avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531304 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12901303 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.
Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41061302 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients
Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan
Abstract:
This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.
Keywords: Empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239