Search results for: Image forensics
175 Alignment of Emission Gamma Ray Sources with Nai(Ti) Scintillation Detectors by Two Laser Beams to Pre-Operation using Alternating Minimization Technique
Authors: Abbas Ali Mahmood Karwi
Abstract:
Accurate timing alignment and stability is important to maximize the true counts and minimize the random counts in positron emission tomography So signals output from detectors must be centering with the two isotopes to pre-operation and fed signals into four units of pulse-processing units, each unit can accept up to eight inputs. The dual source computed tomography consist two units on the left for 15 detector signals of Cs-137 isotope and two units on the right are for 15 detectors signals of Co-60 isotope. The gamma spectrum consisting of either single or multiple photo peaks. This allows for the use of energy discrimination electronic hardware associated with the data acquisition system to acquire photon counts data with a specific energy, even if poor energy resolution detectors are used. This also helps to avoid counting of the Compton scatter counts especially if a single discrete gamma photo peak is emitted by the source as in the case of Cs-137. In this study the polyenergetic version of the alternating minimization algorithm is applied to the dual energy gamma computed tomography problem.Keywords: Alignment, Spectrum, Laser, Detectors, Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609174 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier
Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana
Abstract:
The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).
Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715173 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water
Authors: Manjie Li, Xiangju Cheng, Yongcan Chen
Abstract:
With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.
Keywords: Assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786172 Sustainable Renovation and Restoration of the Rural Based on the View Point of Psychology
Abstract:
Countryside has been generally recognized and regarded as a characteristic symbol which presents in human memory for a long time. As a result of the change of times, because of it is failure to meet the growing needs of the growing life and mental decline, the vast rural area began to decline. But their history feature image which accumulated by the ancient tradition provides people with the origins of existence on the spiritual level, such as "identity" and "belonging", makes people closer to the others in the spiritual and psychological aspects of a common experience about the past, thus the sense of a lack of culture caused by the losing of memory symbols is weakened. So, in the modernization process, how to repair its vitality and transform and planning it in a sustainable way has become a hot topics in architectural and urban planning. This paper aims to break the constraints of disciplines, from the perspective of interdiscipline, using the research methods of systems science to analyze and discuss the theories and methods of rural form factors, which based on the viewpoint of memory in psychology. So we can find a right way to transform the Rural to give full play to the role of the countryside in the actual use and the shape of history spirits.Keywords: The rural, sustainable renovation, restoration, psychology, memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475171 Understanding Evolutionary Algorithms through Interactive Graphical Applications
Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez
Abstract:
It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.Keywords: Education, evolutionary algorithms, evolution strategies, interactive learning applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063170 Perceptual JPEG Compliant Coding by Using DCT-Based Visibility Thresholds of Color Images
Authors: Kuo-Cheng Liu
Abstract:
Effective estimation of just noticeable distortion (JND) for images is helpful to increase the efficiency of a compression algorithm in which both the statistical redundancy and the perceptual redundancy should be accurately removed. In this paper, we design a DCT-based model for estimating JND profiles of color images. Based on a mathematical model of measuring the base detection threshold for each DCT coefficient in the color component of color images, the luminance masking adjustment, the contrast masking adjustment, and the cross masking adjustment are utilized for luminance component, and the variance-based masking adjustment based on the coefficient variation in the block is proposed for chrominance components. In order to verify the proposed model, the JND estimator is incorporated into the conventional JPEG coder to improve the compression performance. A subjective and fair viewing test is designed to evaluate the visual quality of the coding image under the specified viewing condition. The simulation results show that the JPEG coder integrated with the proposed DCT-based JND model gives better coding bit rates at visually lossless quality for a variety of color images.
Keywords: Just-noticeable distortion (JND), discrete cosine transform (DCT), JPEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580169 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.
Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773168 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards
Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee
Abstract:
In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.Keywords: Text detection, edge profile, signboard image, fuzzy clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225167 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.
Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769166 Photogrammetric Survey on the Natural Gas Pipeline Projects of Iran-Turkey- Europe (ITE)
Authors: Ferruh Yildiz
Abstract:
The ITE Project is a project that has 1800 km length and across the Turkey's land through east to west. The project of pipeline enters geographically from Iran to Doğubayazit (Turkey) in the east, exits to Greece from Ipsala province of Turkey in the west. This project is the one of the international projects in such scale that provides the natural gas of Iran and Caspian Sea through the European continent. In this investigation, some information will be given about the methods used to verify the direction of the pipeline and the technical properties of the results obtained. The cost of project itself entirely depends on the direction of the pipeline which would be as short as possible and the specifications of the land cover. Production standards of 1/2000 scaled digital orthophoto and vectoral maps as a results of the use of map production materials and methods (such as high resolution satellite images, and digital aerial images captured from digital aerial cameras), will also be given in this report. According to Turkish national map production standards, TM ((Transversal Mercator, 3 degree) projection is used for large scale map and UTM (Universal Transversal Mercator, 6 degree) is used for small scale map production standards. Some information is also given about the projection used in the ITE natural gas pipeline project.
Keywords: Digital Image Processing, Natural Gas Pipe Line, Photogrammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414165 The Analysis of Printing Quality of Offset - Printing Ink with Coconut Oil Base
Authors: Wat Ploysri
Abstract:
The objectives of this research are to produce prototype coconut oil based solvent offset printing inks and to analyze a basic quality of printing work derived from coconut oil based solvent offset printing inks, by mean of bringing coconut oil for producing varnish and bringing such varnish to produce black offset printing inks. Then, analysis of qualities i.e. CIELAB value, density value, and dot gain value of printing work from coconut oil based solvent offset printing inks which printed on gloss-coated woodfree paper weighs 130 grams were done. The research result of coconut oil based solvent offset printing inks indicated that the suitable varnish formulation is using 51% of coconut oil, 36% of phenolic resin, and 14% of solvent oil 14%, while the result of producing black offset ink displayed that the suitable formula of printing ink is using varnish mixed with 20% of coconut oil, and the analyzing printing work of coconut oil based solvent offset printing inks which printed on paper, the results were as follows: CIELAB value of black offset printing ink is at L* = 31.90, a* = 0.27, and b* = 1.86, density value is at 1.27 and dot gain value was high at mid tone area of image area.
Keywords: Offset Printing, Coconut Oil, Printing Ink, Printing Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3825164 Dynamics and Driving Forces of the Alpine Wetlands in the Yarlung Zangbo River Basin of Tibet, China
Authors: Weishou Shen, Dong Liu, Di Ji, Haoyun Shen, Naifeng Lin
Abstract:
Based on the field investigation and long term remote sensing data, the dynamics of the alpine wetland in the river basin and their response to climate change were studied. Results showed the alpine wetlands accounted for 3.73% of total basin in 2010. Lake and river appeared an increasing trend in the past 30 years, with an increase of 34.36 % and 24.57%. However, swamp exhibited a tendency of decreasing with 233.74 km2. Annual average temperature, maximum temperature, minimum temperature and precipitation in the river basin all exhibited an increasing trend, whereas relative humidity exhibited a decreasing trend. Ice and snow melting are main reasons of lake and river area enhancement and swamp area descend. There existed 91.78%-97.86% of reduced swamp converted into lakes on the basis of remote sensing image interpretation. China-s government policy of implementing development in the river basin is the major driving force of artificial wetland growth.Keywords: alpine wetland dynamics, climate change, Yarlung Zangbo River basin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653163 Morphology of Parts of the Middle Benue Trough of Nigeria from Spectral Analysis of Aeromagnetic Data (Akiri Sheet 232 and Lafia Sheet 231)
Authors: B. S. Jatau, Nandom Abu
Abstract:
Structural interpretation of aeromagnetic data and Landsat imagery over the Middle Benue Trough was carried out to determine the depth to basement, delineate the basement morphology and relief, and the structural features within the basin. The aeromagnetic and Landsat data were subjected to various image and data enhancement and transformation routines. Results of the study revealed lineaments with trend directions in the N-S, NE-SW, NWSE and E-W directions, with the NE-SW trends been dominant. The depths to basement within the trough were established to be at 1.8, 0.3 and 0.8km, as shown from the spectral analysis plot. The Source Parameter Imaging (SPI) plot generated showed the centralsouth/ eastern portion of the study area as being deeper in contrast to the western-south-west portion. The basement morphology of the trough was interpreted as having parallel sets of micro-basins which could be considered as grabens and horsts in agreement with the general features interpreted by early workers.
Keywords: Morphology, Middle Benue Trough, Spectral Analysis, Source Parameter Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4065162 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613161 Multi-Agent Simulation of Wayfinding for Rescue Operation during Building Fire
Authors: G. Sokhansefat, M. Delavar, M. Banedj-Schafii
Abstract:
Recently research on human wayfinding has focused mainly on mental representations rather than processes of wayfinding. The objective of this paper is to demonstrate the rationality behind applying multi-agent simulation paradigm to the modeling of rescuer team wayfinding in order to develop computational theory of perceptual wayfinding in crisis situations using image schemata and affordances, which explains how people find a specific destination in an unfamiliar building such as a hospital. The hypothesis of this paper is that successful navigation is possible if the agents are able to make the correct decision through well-defined cues in critical cases, so the design of the building signage is evaluated through the multi-agent-based simulation. In addition, a special case of wayfinding in a building, finding one-s way through three hospitals, is used to demonstrate the model. Thereby, total rescue time for rescue operation during building fire is computed. This paper discuses the computed rescue time for various signage localization and provides experimental result for optimization of building signage design. Therefore the most appropriate signage design resulted in the shortest total rescue time in various situations.Keywords: Multi-Agent system (MAS), Spatial Cognition, Wayfinding, Indoor Environment, Geospatial Information System (GIS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380160 Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications
Authors: Haridas Kuruveettil, Dongning Zhao, Cheong Jia Hao, Minkyu Je
Abstract:
We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for a three dimensional ultrasound bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface a 2-D array of high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together. Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².
Keywords: Ultrasound, analog front end, medical imaging, beam forming, biomicroscope, transimpedance gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8182159 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: Computing methodologies, interest point, salient region detections, image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864158 Spread Spectrum Image Watermarking for Secured Multimedia Data Communication
Authors: Tirtha S. Das, Ayan K. Sau, Subir K. Sarkar
Abstract:
Digital watermarking is a way to provide the facility of secure multimedia data communication besides its copyright protection approach. The Spread Spectrum modulation principle is widely used in digital watermarking to satisfy the robustness of multimedia signals against various signal-processing operations. Several SS watermarking algorithms have been proposed for multimedia signals but very few works have discussed on the issues responsible for secure data communication and its robustness improvement. The current paper has critically analyzed few such factors namely properties of spreading codes, proper signal decomposition suitable for data embedding, security provided by the key, successive bit cancellation method applied at decoder which have greater impact on the detection reliability, secure communication of significant signal under camouflage of insignificant signals etc. Based on the analysis, robust SS watermarking scheme for secure data communication is proposed in wavelet domain and improvement in secure communication and robustness performance is reported through experimental results. The reported result also shows improvement in visual and statistical invisibility of the hidden data.
Keywords: Spread spectrum modulation, spreading code, signaldecomposition, security, successive bit cancellation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780157 Automatic Map Simplification for Visualization on Mobile Devices
Authors: Hang Yu
Abstract:
The visualization of geographic information on mobile devices has become popular as the widespread use of mobile Internet. The mobility of these devices brings about much convenience to people-s life. By the add-on location-based services of the devices, people can have an access to timely information relevant to their tasks. However, visual analysis of geographic data on mobile devices presents several challenges due to the small display and restricted computing resources. These limitations on the screen size and resources may impair the usability aspects of the visualization applications. In this paper, a variable-scale visualization method is proposed to handle the challenge of small mobile display. By merging multiple scales of information into a single image, the viewer is able to focus on the interesting region, while having a good grasp of the surrounding context. This is essentially visualizing the map through a fisheye lens. However, the fisheye lens induces undesirable geometric distortion in the peripheral, which renders the information meaningless. The proposed solution is to apply map generalization that removes excessive information around the peripheral and an automatic smoothing process to correct the distortion while keeping the local topology consistent. The proposed method is applied on both artificial and real geographical data for evaluation.
Keywords: Map simplification, visualization, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435156 Constraint Active Contour Model with Application to Automated Three-Dimensional Airway Wall Segmentation
Authors: Kuo-Lung Lor, Chi-Hsuan Tsou, Yeun-Chung Chang, Chung-Ming Chen
Abstract:
For evaluating the severity of Chronic Obstructive Pulmonary Disease (COPD), one is interested in inspecting the airway wall thickening due to inflammation. Although airway segmentations have being well developed to reconstruct in high order, airway wall segmentation remains a challenge task. While tackling such problem as a multi-surface segmentation, the interrelation within surfaces needs to be considered. We propose a new method for three-dimensional airway wall segmentation using spring structural active contour model. The method incorporates the gravitational field of the image and repelling force field of the inner lumen as the soft constraint and the geometric spring structure of active contour as the hard constraint to approximate a three-dimensional coupled surface readily for thickness measurements. The results show the preservation of topology constraints of coupled surfaces. In conclusion, our springy, soft-tissue-like structure ensures the globally optimal solution and waives the shortness following by the inevitable improper inner surface constraint.
Keywords: active contour model, airway wall, COPD, geometric spring structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576155 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.
Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345154 Motion-Based Detection and Tracking of Multiple Pedestrians
Authors: A. Harras, A. Tsuji, K. Terada
Abstract:
Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.
Keywords: Automatic detection, tracking, pedestrians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825153 Mapping of Siltations of AlKhod Dam, Muscat, Sultanate of Oman Using Low-Cost Multispectral Satellite Data
Authors: Sankaran Rajendran
Abstract:
Remote sensing plays a vital role in mapping of resources and monitoring of environments of the earth. In the present research study, mapping and monitoring of clay siltations occurred in the Alkhod Dam of Muscat, Sultanate of Oman are carried out using low-cost multispectral Landsat and ASTER data. The dam is constructed across the Wadi Samail catchment for ground water recharge. The occurrence and spatial distribution of siltations in the dam are studied with five years of interval from the year 1987 of construction to 2014. The deposits are mainly due to the clay, sand and silt occurrences derived from the weathering rocks of ophiolite sequences occurred in the Wadi Samail catchment. The occurrences of clays are confirmed by minerals identification using ASTER VNIR-SWIR spectral bands and Spectral Angle Mapper supervised image processing method. The presence of clays and their spatial distribution are verified in the field. The study recommends the technique and the low-cost satellite data to similar region of the world.
Keywords: Alkhod Dam, ASTER Siltation, Landsat, Remote Sensing, Oman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110152 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359151 Character Segmentation Method for a License Plate with Topological Transform
Authors: Jaedo Kim, Youngjoon Han, Hernsoo Hahn
Abstract:
This paper propose the robust character segmentation method for license plate with topological transform such as twist,rotation. The first step of the proposed method is to find a candidate region for character and license plate. The character or license plate must be appeared as closed loop in the edge image. In the case of detecting candidate for character region, the evaluation of detected region is using topological relationship between each character. When this method decides license plate candidate region, character features in the region with binarization are used. After binarization for the detected candidate region, each character region is decided again. In this step, each character region is fitted more than previous step. In the next step, the method checks other character regions with different scale near the detected character regions, because most license plates have license numbers with some meaningful characters around them. The method uses perspective projection for geometrical normalization. If there is topological distortion in the character region, the method projects the region on a template which is defined as standard license plate using perspective projection. In this step, the method is able to separate each number region and small meaningful characters. The evaluation results are tested with a number of test images.Keywords: License Plate Detection, Character Segmentation, Perspective Projection, Topological Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934150 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery
Authors: Seema Biday, Udhav Bhosle
Abstract:
Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979149 Glorification Trap in Combating Human Trafficking in Indonesia: An Application of Three-Dimensional Model of Anti-Trafficking Policy
Authors: M. Kosandi, V. Susanti, N. I. Subono, E. Kartini
Abstract:
This paper discusses the risk of glorification trap in combating human trafficking, as it is shown in the case of Indonesia. Based on a research on Indonesian combat against trafficking in 2017-2018, this paper shows the tendency of misinterpretation and misapplication of the Indonesian anti-trafficking law into misusing the law for glorification, to create an image of certain extent of achievement in combating human trafficking. The objective of this paper is to explain the persistent occurrence of human trafficking crimes despite the significant progress of anti-trafficking efforts of Indonesian government. The research was conducted in 2017-2018 by qualitative approach through observation, depth interviews, discourse analysis, and document study, applying the three-dimensional model for analyzing human trafficking in the source country. This paper argues that the drive for glorification of achievement in the combat against trafficking has trapped Indonesian government in the loop of misinterpretation, misapplication, and misuse of the anti-trafficking law. In return, the so-called crime against humanity remains high and tends to increase in Indonesia.Keywords: Human trafficking, anti-trafficking policy, transnational crime, source country, glorification trap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963148 Investigating the Vehicle-Bicyclists Conflicts Using LIDAR Sensor Technology at Signalized Intersections
Authors: Alireza Ansariyar, Mansoureh Jeihani
Abstract:
Light Detection and Ranging (LiDAR) sensors is capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore city. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By employing an image-processing algorithm, a safety Measure of Effectiveness (MOE) aims to identify critical zones for bicyclists upon entering each respective zone at the signalized intersection. Considering the trajectory of conflicts, the results of analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.
Keywords: LiDAR sensor, Post Encroachment Time threshold, vehicle-bike conflicts, measure of effectiveness, weather condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139147 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.
Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340146 SVM-Based Detection of SAR Images in Partially Developed Speckle Noise
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images.Keywords: Least Square-Support Vector Machine, SyntheticAperture Radar. Partially Developed Speckle, Multi-Look Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536