
 
Abstract—Light Detection and Ranging (LiDAR) sensors is 

capable of recording traffic data including the number of passing 
vehicles and bicyclists, the speed of vehicles and bicyclists, and the 
number of conflicts among both road users. In order to collect real-
time traffic data and investigate the safety of different road users, a 
LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection 
in Baltimore city. The frequency and severity of collected real-time 
conflicts were analyzed and the results highlighted that 122 conflicts 
were recorded over a 10-month time interval from May 2022 to 
February 2023. By employing an image-processing algorithm, a safety 
Measure of Effectiveness (MOE) aims to identify critical zones for 
bicyclists upon entering each respective zone at the signalized 
intersection. Considering the trajectory of conflicts, the results of 
analysis demonstrated that conflicts in the northern approach (zone N) 
are more frequent and severe. Additionally, sunny weather is more 
likely to cause severe vehicle-bike conflicts. 

 
Keywords—LiDAR sensor, Post Encroachment Time threshold, 

vehicle-bike conflicts, measure of effectiveness, weather condition.  

I. INTRODUCTION 

S bicycle riding is becoming increasingly popular in most 
U.S. cities, the safety of this vulnerable group of road users 

is becoming increasingly of concern. In the interaction between 
bicycles and motorized vehicles, bicyclists as Vulnerable Road 
Users (VRUs) are at risk of traffic fatalities [1]. Various studies 
have shown that the frequency and severity of conflicts are 
reduced as the bike road is separated from other road users [1]-
[5]. The presence of bicyclists may go unnoticed by car drivers 
due to distraction, malfunction, or system malfunction. The 
frequency of preventable deaths from bicycle transportation 
incidents in the U.S. increased by 16% in 2020 and has 
increased by 44% in the last decade, from 873 in 2011 to 1,260 
in 2020. At the same time, from 536,412 injuries in 2011 to 
325,173 injuries in 2020, the number of preventable nonfatal 
injuries has declined by 39%. However, the number of 
preventable nonfatal injuries did increase by 5% in 2020 
compared to 2019 [6]. In order to better understand how 
bicyclists interact with other road users, especially motorized 
vehicles in urban areas, new technologies must be applied to 
collect both road users' behaviors. LIDAR sensor records the 
number, type, time, and longitudinal and lateral positions of 
conflicts between vehicles and bicyclists. LIDAR sensors have 
increasingly been used for recording real-time traffic data in 
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recent years. In some studies [7]-[9], LIDAR sensor as a 
detached sensing technology has assisted few designs and 
planning works, precisely detecting and tracking bicyclists, and 
vehicles at intersections. In addition to collecting real-time 
traffic data (counts, speeds, conflicts, and trajectories), LIDAR 
sensors can assess the safety of various road users at 
intersections. It is important to identify critical zones of 
intersections between motorized vehicles and bicyclists in 
terms of frequency and severity of the conflicts and propose 
practical solutions for improving road safety.  

Several infrastructure-based sensor technologies are 
available for traffic detection, including inductive loops, 
microwave radar, and CCTV (video cameras), which are 
probably the most popular. These sensor technologies are 
hindered by the inability to obtain trajectory-level data and low 
performance in the precise detection and tracking of vehicles 
and bicyclists. For long-term enhancement of evasive action by 
road users, a real-time collaborative system of infrastructure-
mounted sensors is required. The LIDAR sensors are efficient 
infrastructure-based detection systems with much more 
processing and computing power can enhance the accuracy of 
traffic analysis, and can cover “illumination condition” issues 
[10] providing valid information regardless of the weather 
condition or recording video at night. LIDAR sensor records 
surrogate safety measures (SSM) including Post-Encroachment 
Time (PET) that is suitable tool in detecting dangerous near-
crash situations between road users. PET is the main focus of 
our paper for motorized vehicle-bike conflicts. PET refers to the 
period between the time when the first vehicle last occupied a 
position and the time when the second vehicle subsequently 
occupied that same position [11]. PET equal to 0 indicates a 
collision and non-zero values indicate crash proximity. Higher 
PET values indicate a less severe crash, while lower PET values 
indicate a more severe crash. The state-of-the-art demonstrated 
that the collected PETs by a LIDAR sensor for vehicle-bike 
conflicts was not efficiently evaluated. To fill this gap, this 
paper investigates the critical zones in one of the hazardous 
signalized intersections in Baltimore city based on Baltimore 
police reports in terms of the frequency and severity of vehicle-
bike conflicts. For doing so, based on the accuracy of LIDAR 
data at Cold Spring Ln – Hillen Rd intersection [12], a 
comprehensive analysis of vehicle-bike conflicts over a 10-
month time interval is proposed. Following that, the paper 
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attempts to examine traffic and environmental characteristics, 
including traffic signal phasing and timing and the impact of 
weather on vehicle-bike conflict.  

The remainder of this article is structured as follows: Section 
II: Literature Review, Section III: Research Methodology, 
Section IV: Analysis of Collected Vehicle-Bike Conflict Data 
by the LIDAR Sensor, Section V: Discussion, Section VI: 
Conclusion, and References.  

II. LITERATURE REVIEW 

In a crash between a bike and a vehicle, the cyclist is more 
likely to suffer injuries than the vehicle driver [13]. The 
published statistics in terms of bicyclist deaths by age and sex 
in the U.S. from 1975 to 2020 [14] highlighted the frequency of 
male bicyclists less than 20 years’ old who were died in vehicle-
bike conflicts decreased dramatically. The chart of female 
bicyclists younger than 20 years’ old who died in vehicle-bike 
collisions experienced lower slope than male bicyclists. On the 
other hand, the chart of male and female bicyclists older than 
20 years’ old who were died in vehicle-bike conflicts 
experienced upward slopes. The report [14] also demonstrated 
that from 2010 to 2020, bicyclists without helmets were 
responsible for 59% of fatalities in vehicle-bike collisions, and 
bicyclists with helmets accounted for 16% of fatalities. 
Furthermore, summer is the peak riding season for bicyclists, 
which accounts for 33% of all bicyclist deaths in interaction 
with motorized vehicles in 2020. According to the diurnal 
distribution of bicyclist deaths in 2020, approximately 40% of 
fatalities occurred after 6 PM when the weather turns dark. 
Considering the importance of bicyclists safety as one of VRUs 
[15]-[18], it is important to investigate accurately the 
interaction between motorized vehicles and bicyclists on 
different types of roads. In recent years, various technologies 
were used to collect traffic data for vehicle-bike interaction e.g., 
bike or car simulators [1], [19]-[21], video recording or CCTVs 
[22]-[24], and LIDAR sensors [8], [25]-[27]. A LIDAR sensor, 
as a leading technology, can assist various research projects, 
especially those focusing on increasing pedestrian and bicycle 
safety. To save lives and build safer cities, intelligent road 
management and smarter traffic policies are essential. As a 
solution to this growing need, smart cities around the world 
have begun using LIDAR technology to monitor traffic and 
collect critical data to improve pedestrian and cyclist safety 
policies and infrastructure [28]. LIDAR technology can be an 
efficient solution to monitor vehicle-bike conflicts [7]. 
Globally, traffic injuries are the leading cause of bicyclists’ 
death for individuals between the ages of 5 and 29 years [29]. 
Due to the accuracy of LIDAR sensors to collect conflict data 
[12], the resulting LIDAR data are used to generate 3D point 
clouds, which provide advanced 3D perception and situational 
awareness. In order to make data-driven decisions in real-time, 
these data are then analyzed using computer perception 
software. LIDAR sensors monitor and collect traffic data 
autonomously at intersections and roads, including how and 
when road users and vehicles use them. In the rain, snow, wind, 
dust, fog, bright sunlight, and very low light, 3D LIDAR 
sensors provide greater than 95% detection accuracy and 24/7 

reliability [30]. It is possible for some LIDAR sensors to 
capture hundreds of points per second. With LIDAR, situational 
awareness can be enhanced beyond what can be achieved with 
cameras or manual data collection. LIDAR is a powerful and 
versatile technology that is capable of handling a variety of 
traffic monitoring applications, especially detecting bicyclists 
and pedestrians concealed in blind spots [31]. Traffic conflict 
measurements generally are continuous, and it is possible to 
model their severity as a continuous dependent variable by a 
transformation of the indicator [32]-[34] or the value of the 
indicator itself [35]. The literature declared that new 
technologies e.g., LIDAR has not been efficiently utilized for 
bicyclists safety detection in interaction with other vehicles. 
Due to filling the current gap in the state of the art, and based 
on the potential benefits of LIDAR technology to collect real-
time conflict data, the present paper investigates the frequency 
and severity of vehicle-bike conflicts simultaneously, and 
analyze the critical zones for bicyclists at one of hazardous 
signalized intersections in Baltimore city, MD. Furthermore, 
the paper tries to evaluate the effect of traffic and environmental 
characteristics e.g., timing and phasing of traffic signal and the 
weather condition on the frequency and severity of vehicle-bike 
conflicts.  

III. RESEARCH METHODOLOGY 

E Cold Spring Ln-Hillen Rd intersection in Baltimore city, 
MD was equipped with a LIDAR sensor on the south-western 
side. As can be seen in Fig. 1, Cold Spring Ln is a two-way east-
west road with three lanes in each direction, and Hillen Rd is a 
secondary north-south road with three lanes in each direction. 
The location of the LIDAR sensor is shown as a red circle in 
Fig. 1.  

 

 

Fig. 1 Cold Spring Ln - Hillen Rd intersection [12] 
 

Cold Spring Ln. is a 35-mile/hour speed and 1800 PCU/h 
capacity and Hillen Rd is a primary north-south road with 35 
mile/hour speed and 1400 PCU/h capacity. To analyze the 
frequency of conflicts between motorized vehicles and 
bicyclists, a dashboard was designed to collect real-time PET 
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values, hourly conflict intervals, the speed of leading and 
following vehicles, and the longitudinal and lateral positions of 
conflicts. Machine-learning algorithms [12] are applied to the 
data collected from the roadside unit (RSU) in the intersection 
in order to process direct, left-turn, and right-turn movements. 
As a consequence, real-time flow charts are drawn to show 
vehicle volume/count, speed, conflicts, and signal timing. The 
raw data were processed and the highly accurate real-time 
traffic data (count, speed, conflicts, and jay-walking) were 
provided by using supervised machine learning [12]. The 
accuracy of collected PET data by LIDAR sensor was 
investigated with the recognized PETs by two installed Closed-
Circuit Television (CCTVs) in the intersection – the same 
proposed methodology [36] – and the obtained PETs were 
analyzed frame by frame [37] to verify the highly accurate PET 
datasets. The real-time API that applied by LIDAR provides 
access to the frame data (location, class type and the tracking 
ID of each object within a frame), occupancy changes for each 
phase (virtual inductive loops that are called upon the presence 
of vehicles on the defined regions/loops), and phase changes at 
intersections (traffic light status) [37].  

Image-processing toolbox in MATLAB software was used to 
provide a conflict heat map based on the longitudinal and lateral 
positions of conflicts. Additionally, the current phasing and 
timing of traffic signal patterns during AM peak, MD peak, and 

PM peak phases were imported into MATLAB code in order to 
determine the frequency of conflicts at each phase of the 
intersection during different hours of the day. The variables i.e., 
left-and right-turning trajectories of vehicles and bicyclists 
from the initial positions to conflict points, speed of left-turning 
and right-turning of the vehicles and bicyclists, zone of conflict, 
the entrance bicyclists volume to zone, weather, and the traffic 
signal timing and phasing were analyzed in order to specify the 
highly correlated variables to vehicle-bike conflicts at 
signalized intersections. It is worth mentioning that Excel, 
MATLAB, Python, and VeloView software [38] were used for 
the data analysis.  

IV. ANALYSIS OF COLLECTED VEHICLE-BIKE CONFLICT DATA 

BY THE LIDAR SENSOR 

An initial analysis of vehicle-bike conflicts revealed 122 
conflicts occurred between May 2022 and February 2023 (a 10-
month interval). According to Fig. 2, 52% of total conflicts 
occurred after 5 PM on an hourly basis. There is a greater 
likelihood of conflict as the weather approaches sunset and 
afterward. The weather can have a significant impact on 
vehicle-bike conflicts depending on the time of day and the 
weather conditions, as shown in Fig. 2. 

 

 

Fig. 2 Hourly frequency of vehicle-bike conflicts 
 

Fig. 3 shows the monthly frequency of conflicts that were 
recorded from May to February, respectively.  

Additionally, the conflicts decreased significantly over the 
summer (especially July and August), as the intersection was 
located close to Morgan State University, and the volume of 
vehicles decreased due to summer semester. Also, 9% of 
conflicts was collected in May three weeks before closing the 
public schools in Baltimore. The frequency and severity of 
conflicts over a 10-month time interval are shown in Fig. 4. 

To effectively analyze the frequency and severity of 
conflicts, five zones including zone east (E), zone north (N), 
zone west (W), zone south (S), and zone center (C) were 
considered. Fig. 5 shows the location of each zone in the 
intersection. The LIDAR sensor can recognize the near-crash 

conflicts in a radius of 150 m. The LIDAR collected the 
longitudinal and lateral position of conflicts. Geographical 
coordinates of each conflicts were double-checked on Google 
Maps and open street maps to verify the exact location of 
conflict. The border of each zone was defined based on the 
location of stop lines and the border of the zones was 
determined in such a way to minimize the error of placing 
conflicts on the border between two zones. 
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Fig. 3 Monthly frequency of vehicle-bike conflicts 

Fig. 6 shows the frequency of conflicts in each zone. As can 
be seen in Fig. 6, 29%, 38%, 9%, 14%, and 11% of total 
conflicts were collected in zones E, N, W, S, and C, 
respectively. Furthermore, 66% of total conflicts were collected 
in northern and eastern approaches of the intersection (= zones 
N and E). 

Vehicle-bike conflicts according to possible movements in 
the intersection were categorized. 12 possible movements can 
be defined by considering the approaches east (E), north (N), 
west (W), and south (S) as shown in Fig. 7, including EN, EW, 
ES, NW, NS, NE, WS, WE, WN, SE, SN, and SW. Fig. 7 
demonstrates the frequency of vehicle-bike conflicts in each 
one of the 12 possible movements. 

 
 

 

 

Fig. 4 The dispersion of the frequency and severity of the collected vehicle-bike conflicts 
 

 

Fig. 5 The location of zones in the intersection 
 

 

Fig. 6 Frequency of conflicts analysis in each zone 
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Fig. 7 Frequency of conflicts analysis in each movement 
 

As can be seen in Fig. 7, 23%, 17%, and 16% of conflicts 
were occurred in WN (EBL), NW (SBR), and ES (WBL). 
Furthermore, based on the collected bike speed and vehicle 
speed in the conflict point, 39 conflicts were blamed on the 
bicyclist and 83 conflicts were blamed on the vehicle. 
According to the proposed PET categories in our previous study 
[12], four categories were investigated including 0 < PET < 0.7 
as a serious conflict, 0.7 < = PET < 1.31 as a general conflict, 
1.31 < = PET < 2.25 as a slight conflict, and 2.25 < = PET < = 
5 as a potential conflict. The results of vehicle-bike PETs from 
LIDAR highlighted one general conflict (0.8%), 19 slight 
conflicts (15.6%), and 102 potential conflicts (83.6%) occurred 
during ten months’ interval.  

The LIDAR sensor was directly connected to a central 
computer in the controller cabinet of the intersection. The 
central computer can analyze normalizing of conflicts [12] 
considering the traffic volume of the intersection. A Machine 
Learning Algorithm was used for object detection and 
classification. A procedure was developed for roadside LIDAR 
data processing, including major steps of background, object 
clustering, identification of road user types, tracking road users 
in different data frames, and output of traffic trajectory data. 
The procedure of finding the objects by LIDAR sensor follows 
the following steps consecutively: 
1. No traffic data frames are collected in time intervals when 

no traffic passes from different approaches to the 
intersection.  

2. Multiple no-traffic data frames are aggregated to identify 
background objects and removed them from LIDAR data 
frames. 

3. In order to create the elevation-azimuth matrix, the 3D 
point clouds are first converted into spherical coordinates. 
To store range, azimuth, and intensity information, the raw 
LIDAR data were rearranged into the new data structure. 
Using intensity channel pattern recognition as described 
[39], the LIDAR data are decomposed into low-rank 

backgrounds and sparse foregrounds. 
4. According to the reflectivity of the object and the 

wavelength that the LIDAR uses, a position packet and a 
data packet are created. Position packets are known as GPS 
packets, and data packets contain information about 
distance and intensity. LIDAR systems use spherical 
coordinates initially and then transform spherical data to 
XYZ coordinates. 

5. Moving points are clustered so that they can be easily 
distinguished from the foreground and background. By 
using an azimuth-height background filtering method 
proposed by [40], an azimuth-height table is developed. 
The height of each point with the height of backgrounds is 
compared to recognize and then classify road users and 
non-road users in different data frames. 

The accuracy of using these algorithms when counting 
vehicles is 97.5% and the accuracy of measuring speed ranges 
from 92% to 96%, depending on the vehicle’s average moving 
speed [39], [41]. The frequency of conflicts in terms of leading 
and following vehicles was analyzed. Table I shows the 
frequency of leading conflicts (motorized vehicles as leading) 
in different zones. Additionally, Table II shows the total 
frequency of following conflicts (motorized vehicles as 
following). Table II shows the frequency of conflicts in each 
approach (Eastern, Western Northern, and Southern) of the 
intersection based on leading or following vehicles. 

 
TABLE I 

FREQUENCY OF LEADING CONFLICTS IN DIFFERENT ZONES AND BASED ON 

DIFFERENT APPROACHES 

ZONE
Leading Vehicles 

EN EW ES NW NS NE WS WE WN SE SN SW 

E 2 1 4 0 0 6 0 3 0 1 0 0 

N 1 0 0 6 2 2 0 0 3 0 3 0 

W 0 0 0 3 0 0 0 0 1 0 0 0 

S 0 0 8 0 0 0 0 0 0 0 1 1 

C 2 0 1 0 0 0 0 1 0 0 0 1 
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TABLE II 
FREQUENCY OF FOLLOWING CONFLICTS IN DIFFERENT ZONES AND BASED ON 

DIFFERENT APPROACHES 

ZONE 
Following Vehicles 

EN EW ES NW NS NE WS WE WN SE SN SW 

E 2 1 6 0 0 3 0 2 0 2 0 0 

N 3 0 0 8 6 4 0 0 4 0 5 0 

W 0 0 0 1 0 0 0 3 2 0 0 1 

S 0 0 2 0 0 0 0 0 0 0 2 4 

C 0 0 1 0 0 0 0 1 6 0 0 0 

 

In order to analyze the frequency of conflicts in each phase 
of the intersection, the timing and phasing of the intersection in 
different daily time intervals were collected. The results 
highlighted eight phases and three timing patterns at morning 
(AM), mid-day (MD), and afternoon (PM). Image processing in 
MATLAB software was used to analyze the frequency of 
conflicts in each phase. For each zone in each phase, the 
frequency of conflicts was determined based on the pattern of 

timing and phasing of the intersection. Table III shows the 
timing patterns of traffic signal in the intersection. 

 
TABLE III 

TIMING AND PHASING PATTERN OF THE TRAFFIC SIGNAL 

Phase
Min green 

time
Gap 
(sec)

Max green 
time (sec)

Yellow 
time (sec) 

AM 
pattern1 

MD 
pattern2 

PM 
pattern3

ф1 8 2 20 4.6 19 17 21 

ф2 10 3 70 4.6 70 45 76 

ф3 7 1.5 20 4.1 21 17 15 

ф4 10 3 50 4.5 50 41 48 

ф5 7 1.5 20 4.6 19 22 15 

ф6 10 3 70 4.6 70 40 82 

ф7 8 1.5 20 4.1 21 22 27 

ф8 10 3 50 4.5 50 36 36 

1. Green time of phase (sec) in morning peak hour time interval 
2. Green time of phase (sec) in mid-day peak hour time interval 
3. Green time of phase (sec) in afternoon peak hour time interval 

 

Fig. 8 shows the eight phases of the traffic signal in the 
intersection. 

 

  

Fig. 8 Phasing of traffic signal in the intersection 
 

As the output of image processing, Table IV shows the 
frequency of conflicts in each zone and by each phase of the 
traffic signal. As can be seen in Table IV, a significant number 
of conflicts was collected in phase 3 (ES), phase 5 (NE), and 
phase 2 (NS & NW). 

 
TABLE IV 

FREQUENCY OF CONFLICTS IN EACH PHASE OF TRAFFIC SIGNAL 

Zone ф1 ф2 ф3 ф4 ф5 ф6 ф7 ф8 SUM

E 0 0 15 6 6 4 0 4 35 

N 0 9 0 0 14 6 13 4 46 

W 2 3 0 2 0 0 3 1 11 

S 2 6 4 2 0 3 0 0 17 

C 0 3 4 1 2 0 3 0 13 

 

The severity of conflicts was analyzed based on sum of 
numerical values of PETs in each zone. The lower the 
numerical value of PET shows the higher severity of conflicts. 
Therefore, higher 1/PET shows the higher severity of conflicts. 
The LIDAR sensor collects “near-crash” conflict data so that 
for each pair of objects with a conflict, PET is calculated as the 
time between the moment the first road user leaves the conflict 

point and the moment the second reaches the same point. The 
type of vehicle (personal car, truck, or bus) is recognized by 
LIDAR, and the mass of leading or following vehicles is taken 
into account to provide PET values. Hence, 1/PET shows the 
severity of near-crash conflicts. Based on the size and mass of 
leading or following vehicles, the LIDAR sensor can estimate 
the severity of conflicts (by lower numerical PET value).  

As shown in Table V, column “average daily 1/PET” shows 
the ADT of PETs for each zone. 

 
TABLE V 

SEVERITY OF CONFLICTS IN EACH ZONE 

Zone 
Sum of frequency of 

conflicts
Sum (1/PET) 

Average Speed 
(km/hr) 

Average Daily 
1/PET

E 35 12.41 27.3 0.0408 

N 46 16.17 26.1 0.0532 

W 11 3.82 21.7 0.0125 

S 17 5.82 25.1 0.0191 

C 13 4.12 23.7 0.0135 
 

In Table V, a significant proportion of conflicts occurred in 
zones N and E, as expected since 66% of total conflicts occurred 
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in these zones. In order to specify the safety condition of 
bicyclists in different approaches to the intersection, sum 1/PET 
was compared to the passing bicyclists volume. The Average 

Daily Traffic (ADT) of bicyclists for time interval May 2022 to 
February 2023 was analyzed. The results are shown in Table 
VI.  

 
TABLE VI 

THE RESULTS OF PASSING BICYCLIST VOLUME FROM DIFFERENT INTERSECTION APPROACHES 

Month 
Passing bike volume 

from zone E 
Passing bike volume 

from zone N 
Passing bike volume 

from zone W
Passing bike volume 

from zone S
Sum of bicyclists volume ADT of bicyclists

May 2022 111 96 161 122 490 16 

June 2022 163 53 173 69 458 15 

July 2022 762 73 206 69 1110 36 

August 2022 314 96 221 172 803 28 

September 2022 491 172 296 308 1267 42 

October 2022 327 128 125 303 883 30 

November 2022 229 82 86 171 568 19 

December 2022 85 44 53 90 272 9 

January 2023 129 59 82 128 398 13 

February 2023 196 73 99 184 552 20 

SUM 2807 876 1502 1616 6801 228 

 
The entrance volume of bicyclists to zone C should be 

determined based on the trajectory of bicyclists. Based on the 
bicyclists' trajectory, 6678 bicyclists pass through zone C. 
Considering the entrance movement (e.g., EW, EN, WE, WN, 
…) to each zone, a Measure of Effectiveness (MOE) as can be 
seen in (1) was proposed. The MOE as shown in Table VII 
specifies the severity of conflicts relative to entrance bicyclists 
volume. 

 

𝑀𝑂𝐸 ൌ  
஺௩௘௥௔௚௘ ஽௔௜௟௬ ሺ

భ
ುಶ೅

ሻ

ா௡௧௥௔௡௖௘ ௕௜௖௬௖௟௜௦௧௦ ௩௢௟௨௠௘ ௧௢ ௭௢௡௘
         (1) 

 
TABLE VII 

THE MOE RESULTS FOR THE FREQUENCY AND SEVERITY OF VEHICLE-BIKE 

CONFLICTS 

Zone 
Sum of 

frequency of 
conflicts 

Sum 
(1/PET) 

Average 
Daily 
1/PET 

Entrance 
bicyclists 

Volume to Zone 

MOE 
*105 

Critical 
Zone 

E 35 12.41 0.0408 2807 1.45 * 

N 46 16.17 0.0532 876 6.07 * 

W 11 3.82 0.0125 1502 0.83  

S 17 5.82 0.0191 1616 1.18  

C 13 4.12 0.0135 6678 0.20  
 

 

Fig. 9 Heat map of vehicle-bike conflicts over a 10-month time 
interval 

As can be seen in Table VII, zones N, and E are critical zones 
in terms of vehicle-bike conflicts. Additionally, zone N 
demonstrates considerable severity of conflicts. Consequently, 
the probability of injury or fatalities in zone N is higher than the 
other zones. The heat map of vehicle-bike conflicts frequency 
and severity based on the proposed MOE over a ten-month time 
interval is shown in Fig. 9. The northern approach to the 
intersection shows significant vehicle-bike conflicts, as shown 
in Fig. 9. 

V. DISCUSSION 

Variables e.g., left-and right-turning trajectories of vehicles 
and bicyclists from the initial positions to conflict points, speed 
of left-turning and right-turning of the vehicles and bicyclists, 
time and distance length of vehicles and bicyclists trajectories, 
hourly time interval of vehicle-bike conflict, zone of conflict, 
the entrance bicyclists volume to zone, weather, and the 
performance of traffic signal timing and phasing were analyzed 
to specify the accuracy and severity of collected PETs by 
LIDAR in critical zones. Zone of conflict [42], [43], time 
interval of conflict [44], [45], and weather [46]-[48] have been 
identified as effective factors in conflicts between motorized 
vehicles and other road users. On the same line with previous 
studies [49]-[51], this paper investigated the effective 
independent variables in vehicle-bike conflicts. Hereupon, the 
results of statistical analysis, as shown in Table VII, specified 
zones N, and E are critical zones for bicyclists. Zones N and E 
are in close proximity of Morgan State University campuses. 
Hence, these two zones are expected to see significant traffic 
conflicts involving vehicles and bikes. As shown in Fig. 2, 52% 
of total conflicts occurred after 5 PM on an hourly basis. 
Vehicle-bike conflicts may be affected by the light condition of 
the day and the weather condition. Therefore, the purpose of 
this section is to investigate whether weather conditions have 
any effect on vehicle-bike conflicts. The results of weather 
condition analysis are shown in Table VIII.  

As shown in Table VIII, on sunny days, vehicle-bike 
conflicts were more severe than in cloudy weather, despite the 
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fact that their frequency was 10.8% less than cloudy days. The 
results of vehicle-bike conflicts frequencies in different weather 
conditions and based on zones are shown in Table IX.  

 
TABLE VIII 

FREQUENCY OF VEHICLE-BIKE CONFLICTS IN DIFFERENT WEATHER 

CONDITIONS 

Weather 
Frequency of 

Vehicle-bike conflicts 
Sum (1/PET) 

Cloudy 51 17.01 

Sunny 46 17.54 

Rainy 25 7.8 
 

TABLE IX 
FREQUENCY OF VEHICLE-BIKE CONFLICTS IN EACH ZONE IN DIFFERENT 

WEATHER CONDITIONS 

Zone/weather Cloudy Sunny Rainy SUM 

E 12 15 8 35 

N 16 17 13 46 

W 6 5 0 11 

S 8 6 3 17 

C 9 3 1 13 

SUM 51 46 25 122 

 

Table X shows the severity of vehicle-bike conflicts in 
different weather conditions in each zone.  

 
TABLE X 

SEVERITY OF VEHICLE-BIKE CONFLICTS IN EACH ZONE IN DIFFERENT 

WEATHER CONDITIONS 

Zone/weather Cloudy Sunny Rainy SUM (1/PET)

E 3.98 5.55 2.87 12.41 

N 4.95 7.45 3.76 16.17 

W 2.11 1.71 0 3.82 

S 2.96 1.99 0.88 5.82 

C 3 0.84 0.28 4.12 

SUM 17.01 17.54 7.8 42.35 

 

As shown in Table X, conflicts in zone N are always more 
severe on sunny, cloudy, and rainy days than in other zones. In 
accordance with Table XII results, zone N is the critical zone of 
the intersection in terms of the frequency, severity, and MOE. 
A comparison of vehicle-bike conflicts in terms of frequency 
(Table IX) and severity (Table X) reveals an average of 0.309, 
0.438, and 0.289 for each conflict occurring in zone N on 
cloudy, sunny, and rainy days, respectively. The fatalities and 
injuries caused by vehicle-bike conflicts are more likely to 
happen on sunny, cloudy, and rainy days in zone N. Different 
reasons including the proximity to Morgan State University's 
main campus, the gradient of the road in this zone, the illegal 
crossing of bicyclists in that zone, and the inability of motorized 
drivers to recognize bicyclists in that zone may increase the 
probability of vehicle-bike collisions in zone N.  

VI. CONCLUSIONS  

Intelligent systems have paved the way to new innovative 
opportunities for improving the safety of transportation 
networks. LIDAR sensors have emerged in recent years as one 
of the most innovative technologies available, allowing users to 
interact with and analyze traffic data in stunning detail. Due to 
the extent of data delivered by LIDAR technology, existing data 

collection problems such as poor weather conditions, and routes 
with restricted access can be resolved. In order to access the 
extent of the data obtained by LIDAR technology, a Velodyne 
LIDAR sensor was installed on the south-western side of E 
Cold Spring Ln – Hillen Rd intersection in Baltimore city, MD. 
This intersection was selected due to its considerable daily 
traffic volume, its close proximity to Morgan State University, 
and its density of residential land-uses in the surrounding area. 
The count vehicle and bike volumes data, speed data, and the 
frequency and severity of conflicts in time interval May 1st, 
2022 to February 28th, 2023 (a 10-month time interval) were 
analyzed. The results specified 122 vehicle-bike conflicts. In 
order to analyze the conflicts, the internal area of the 
intersection was divided into five zones. In each zone, the 
frequency and severity of conflicts were analyzed based on two 
ways including leading and following vehicles conflicts, and in 
different phases of the traffic signal. An innovative image-
processing algorithm was developed in MATLAB software to 
specify the frequency of vehicle-bike conflicts in different daily 
controlling patterns of the traffic signal. The results of leading 
and following vehicles conflicts (Tables I and II) demonstrated 
that the movements ES (= 13 conflicts), NW (= 9 conflicts), and 
NE (= 8 conflicts) are critical leading movements. Additionally, 
the movements WN (= 12 conflicts), ES (= 9 conflicts), and NW 
(= 9 conflicts) are critical following movements. As shown in 
Table IV, the results of the frequency of conflicts in different 
phases of the traffic signal highlighted that a significant number 
of conflicts was collected in ϕ3 (ES), ϕ5 (NE), and ϕ2 (NS & 
NW). The results of innovative safety Measure of Effectiveness 
(MOE) as shown in Table VII specified that zones N, E, and S 
are critical zones in terms of vehicle-bike conflicts. 
Furthermore, zone N exhibits considerable severity of vehicle-
bike conflicts. Therefore, zone N is more likely to experience 
injuries or fatalities than other zones.  

Variables e.g., left-and right-turning trajectories of vehicles 
and bicyclists from the initial positions to conflict points, speed 
of left-turning and right-turning of the vehicles and bicyclists, 
time and distance length of vehicles and bicyclists trajectories, 
hourly time interval of vehicle-bike conflict, zone of conflict, 
the entrance bicyclists volume to zone, weather, and the 
performance of traffic signal timing and phasing were analyzed 
to specify the accuracy and severity of collected PETs by 
LIDAR in critical zones. Vehicle-bike conflicts tend to be 
aggravated by weather conditions, according to the results of 
trajectories. According to Table VIII, vehicle-bike conflicts 
were more severe on sunny days than on cloudy days despite 
their frequency being 10.8% lower on sunny days. Moreover, 
conflicts in zone N are always more severe on sunny, cloudy, 
and rainy days than in other zones. Consequently, our research 
yielded the following contributions: 
 Analysis of vehicle-bike conflicts at a signalized 

intersection in Baltimore City with a high fatality rate for 
pedestrians and cyclists. 

 Analysis of vehicle-bike conflicts based on the movement 
in each approach in each zone, leading and following 
vehicles, and in different phases of the traffic signal by an 
innovative image processing algorithm. 
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 Developing a MOE for vehicle-bike conflicts that take into 
account the frequency and severity of conflicts, as well as 
the bicyclist's volume entering the zone. 

 Analysis of the trajectory of motorized vehicles and 
bicyclists to determine the effect of weather on the 
frequency and severity of vehicle-bike conflicts. 

The main limitation of the study is its confined time interval 
of 10-months. As a future work, the authors are interested in 
working on statistical models e.g., Hierarchical Poisson 
Regression (HPR), logistic regression models, and multinomial 
logit models. The paper helps decision-makers in Baltimore city 
to recognize the spots with the highest potential for vehicle-bike 
conflicts, and improve the timing and phasing of the traffic 
signal in order to decrease the frequency and the severity of 
vehicle-bike conflicts. The conclusions of the paper provide a 
useful reference for researchers when they select a suitable 
model to describe the frequency and severity of vehicle-bike 
conflicts in signalized intersections in other contexts.  

ACKNOWLEDGEMENT 

This study was supported by the Urban Mobility & Equity 
Center, a Tier 1 University Transportation Center of the U.S. 
Department of Transportation University Transportation 
Centers Program at Morgan State University.  

DISCLOSURE OF INFORMATION AND CONFLICTS OF INTEREST 

The authors declare that they have no conflict of interest. 

REFERENCES 
[1] Ansariyar, A., et al., Investigating the Traffic Behavior of Bicyclists in 

Interaction with Car Users on Shared bike lanes without physical barriers. 
Transportation Research Board 102nd Annual Meeting Transportation 
Research Board, 2023. https://trid.trb.org/view/2117768.  

[2] Zangenehpour, S., et al., Are signalized intersections with cycle tracks 
safer? A case–control study based on automated surrogate safety analysis 
using video data. Accident Analysis & Prevention, 2016. 86: p. 161-172. 

[3] Thomas, B. and M. DeRobertis, The safety of urban cycle tracks: A 
review of the literature. Accident Analysis & Prevention, 2013. 52: p. 219-
227. 

[4] Lusk, A.C., et al., Risk of injury for bicycling on cycle tracks versus in 
the street. Injury prevention, 2011. 17(2): p. 131-135. 

[5] Teschke, K., et al., Route infrastructure and the risk of injuries to 
bicyclists: a case-crossover study. American journal of public health, 
2012. 102(12): p. 2336-2343. 

[6] Council, N.S. Bicycle Deaths. 2022; Available from: 
https://injuryfacts.nsc.org/home-and-community/safety-topics/bicycle-
deaths/. 

[7] Wang, D.Z., I. Posner, and P. Newman. What could move? finding cars, 
pedestrians and bicyclists in 3d laser data. in 2012 IEEE International 
Conference on Robotics and Automation. 2012. IEEE. 

[8] Nateghinia, E., et al., A LiDAR-based methodology for monitoring and 
collecting microscopic bicycle flow parameters on bicycle facilities. 
Transportation, 2022: p. 1-25. 

[9] Wu, J., et al., Automatic vehicle classification using roadside LiDAR data. 
Transportation Research Record, 2019. 2673(6): p. 153-164. 

[10] Mukhtar, A., L. Xia, and T.B. Tang, Vehicle detection techniques for 
collision avoidance systems: A review. IEEE transactions on intelligent 
transportation systems, 2015. 16(5): p. 2318-2338. 

[11] FHWA, Surrogate Safety Assessment Model and Validation: Final 
Report. 2008: U.S. Department of Transportation. 

[12] Ansariyar, A. and A. Taherpour, Statistical Analysis of Vehicle-Vehicle 
Conflicts with a LIDAR Sensor in a Signalized Intersection. Advanced in 
transportation studies 2023(60): p. 87-106. 

[13] NHTSA. Overview of Bicycle Safety. 2020; Available from: 

https://www.nhtsa.gov/road-safety/bicycle-safety. 
[14] Safety, I.I.f.H. Fatality Facts 2020 for Bicyclists. 2020; Available from: 

https://www.iihs.org/topics/fatality-statistics/detail/bicyclists. 
[15] Ptak, M., Method to assess and enhance vulnerable road user safety during 

impact loading. Applied Sciences, 2019. 9(5): p. 1000. 
[16] Otte, D., M. Jänsch, and C. Haasper, Injury protection and accident 

causation parameters for vulnerable road users based on German In-Depth 
Accident Study GIDAS. Accident Analysis & Prevention, 2012. 44(1): p. 
149-153. 

[17] Rahman, M.S., et al., Applying machine learning approaches to analyze 
the vulnerable road-users' crashes at statewide traffic analysis zones. 
Journal of safety research, 2019. 70: p. 275-288. 

[18] Vanlaar, W., et al., Fatal and serious injuries related to vulnerable road 
users in Canada. Journal of safety research, 2016. 58: p. 67-77. 

[19] Boda, C.-N., et al., Modelling how drivers respond to a bicyclist crossing 
their path at an intersection: How do test track and driving simulator 
compare? Accident Analysis & Prevention, 2018. 111: p. 238-250. 

[20] Nazemi, M., et al., Studying bicyclists’ perceived level of safety using a 
bicycle simulator combined with immersive virtual reality. Accident 
Analysis & Prevention, 2021. 151: p. 105943. 

[21] Rakha, H., et al., Bicyclist Longitudinal Motion Modeling. 2022. 
[22] Mehta, K., B. Mehran, and B. Hellinga, Evaluation of the passing 

behavior of motorized vehicles when overtaking bicycles on urban arterial 
roadways. Transportation Research Record, 2015. 2520(1): p. 8-17. 

[23] Johnson, M., et al., Cyclists and open vehicle doors: Crash characteristics 
and risk factors. Safety science, 2013. 59: p. 135-140. 

[24] Fonseca-Cabrera, A.S., et al., Micromobility Users’ Behaviour and 
Perceived Risk during Meeting Manoeuvres. International journal of 
environmental research and public health, 2021. 18(23): p. 12465. 

[25] Woongsun, J. and R. Rajamani. A novel collision avoidance system for 
bicycles. in 2016 American Control Conference (ACC). 2016. 

[26] Blankenau, I., et al., Development of a low-cost LiDAR system for 
bicycles. 2018, SAE Technical Paper. 

[27] Xie, Z. and R. Rajamani. On-bicycle vehicle tracking at traffic 
intersections using inexpensive low-density LiDAR. in 2019 American 
Control Conference (ACC). 2019. IEEE. 

[28] Thakur, R., Scanning LIDAR in Advanced Driver Assistance Systems and 
Beyond: Building a road map for next-generation LIDAR technology. 
IEEE Consumer Electronics Magazine, 2016. 5(3): p. 48-54. 

[29] Organization, W.H., Road safety (Road traffic injuries). 2020. 
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries  

[30] Wu, J., H. Xu, and J. Zheng. Automatic background filtering and lane 
identification with roadside LiDAR data. in 2017 IEEE 20th International 
Conference on Intelligent Transportation Systems (ITSC). 2017. IEEE. 

[31] Becker, G. How LiDAR is Making Roads Safer for Pedestrians and 
Cyclists. 2021; Available from: 
https://www.masstransitmag.com/technology/article/21236672/how-
LiDAR-is-making-roads-safer-for-pedestrians-and-cyclists. 

[32] Kiefer, R.J., D.J. LeBlanc, and C.A. Flannagan, Developing an inverse 
time-to-collision crash alert timing approach based on drivers’ last-second 
braking and steering judgments. Accident Analysis & Prevention, 2005. 
37(2): p. 295-303. 

[33] Ismail, K., T. Sayed, and N. Saunier, Methodologies for aggregating 
indicators of traffic conflict. Transportation research record, 2011. 
2237(1): p. 10-19. 

[34] Zheng, L. and K. Ismail, A generalized exponential link function to map 
a conflict indicator into severity index within safety continuum 
framework. Accident Analysis & Prevention, 2017. 102: p. 23-30. 

[35] Zheng, L., T. Sayed, and F. Mannering, Modeling traffic conflicts for use 
in road safety analysis: A review of analytic methods and future 
directions. Analytic methods in accident research, 2021. 29: p. 100142. 

[36] Bluecity. LiDAR Sensor Accuracy of Bluecity LiDAR-Based Traffic 
Monitoring System. 2021; Available from: 
https://bluecity.ai/resources/accuracy-white-paper/. 

[37] Bluecity, Data Structure by LIDAR technology. 2021. 
[38] Jacquet, B. VeloView: The Velodyne LiDAR Viewer based on Paraview 

LiDAR. 2021; Available from: https://www.paraview.org/veloview/. 
[39] Bombardier, R.d.P.a.R.J.A., Stop Line Detection Study. 2022. 
[40] Zhao, J., et al. Azimuth-Height background filtering method for roadside 

LiDAR data. in 2019 IEEE Intelligent Transportation Systems 
Conference (ITSC). 2019. IEEE. 

[41] Bluecity, Bluecity LIDAR data evaluation report. 2022. 
[42] Pirdavani, A., et al. A Simulation-Based Traffic Safety Evaluation of 

Signalized and Un-Signalized Intersections. in Proceedings of the 15th 
International Conference Road Safety on Four Continents. 2010. 

World Academy of Science, Engineering and Technology
International Journal of Transport and Vehicle Engineering

 Vol:18, No:3, 2024 

164International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 T
ra

ns
po

rt
 a

nd
 V

eh
ic

le
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
56

2.
pd

f



[43] Chen, A.Y., et al., Conflict analytics through the vehicle safety space in 
mixed traffic flows using UAV image sequences. Transportation 
Research Part C: Emerging Technologies, 2020. 119: p. 102744. 

[44] Workineh, A.A., Analysis of the relationship between traffic conflicts and 
level of service at four-legged, signalized intersections in Sacramento. 
2014, California State University, Sacramento. 

[45] Lu, G., et al., Relationship Between Road Traffic Accidents and Conflicts 
Recorded by Drive Recorders. Traffic Injury Prevention, 2011. 12(4): p. 
320-326. 

[46] Zeng, Q., et al., Investigating the impacts of real-time weather conditions 
on freeway crash severity: a Bayesian spatial analysis. International 
journal of environmental research and public health, 2020. 17(8): p. 2768. 

[47] Jiang, R., et al., Determining an Improved Traffic Conflict Indicator for 
Highway Safety Estimation Based on Vehicle Trajectory Data. 
Sustainability, 2021. 13(16): p. 9278. 

[48] Saha, S., et al., Adverse weather conditions and fatal motor vehicle 
crashes in the United States, 1994-2012. Environmental health, 2016. 
15(1): p. 1-9. 

[49] Rakha, H., et al., Bicyclist Longitudinal Motion Modeling, U.S. 
Department of Transportation (U.S. DOT) report, 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4377722.  

[50] Ansariyar, A. and A. Taherpour, Investigating the accuracy rate of 
vehicle-vehicle conflicts by LIDAR technology and microsimulation in 
VISSIM and AIMSUN. Advanced in transportation studies 2023(61): p. 
37-52.  

[51] Ansariyar, A., Ardeshiri, A., Jeihani, M., Investigating the collected 
vehicle-pedestrian conflicts by a LIDAR sensor based on a new Post 
Encroachment Time Threshold (PET) classification at signalized 
intersections. Advanced in transportation studies 2023(61): p. 103-118. 

 
 

 

World Academy of Science, Engineering and Technology
International Journal of Transport and Vehicle Engineering

 Vol:18, No:3, 2024 

165International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 T
ra

ns
po

rt
 a

nd
 V

eh
ic

le
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
56

2.
pd

f


