Search results for: patterns classification
476 Development of an ArcGIS Toolbar for Trend Analysis of Climatic Data
Authors: Arnab Bandyopadhyay, Anubhab Pal, Subhajit Debnath
Abstract:
Climate change is a cumulative change in weather patterns over a period of time. Trend analysis using non-parametric Mann-Kendall test may help to determine the existence and magnitude of any statistically significant trend in the climatic data. Another index called Sen slope may be used to quantify the magnitude of such trends. A toolbar extension to ESRI ArcGIS named Arc Trends has been developed in this study for performing the above mentioned tasks. To study the temporal trend of meteorological parameters, 32 years (1971-2002) monthly meteorological data were collected for 133 selected stations over different agro-ecological regions of India. Both the maximum and minimum temperatures were found to be rising. A significant increasing trend in the relative humidity and a consistent significant decreasing trend in the wind speed all over the country were found. However, a general increase in rainfall was not found in recent years.Keywords: Temporal trend, climate change, ArcGIS, Mann- Kendall test, Sen slope
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3092475 Seasonal Water Quality Trends in the Feitsui Reservoir Watershed, Taiwan
Authors: Pei-Te Chiueh, Hsiao-Ting Wu, Shang-Lien Lo
Abstract:
Protecting is the sources of drinking water is the first barrier of contamination of drinking water. The Feitsui Reservoir watershed of Taiwan supplies domestic water for around 5 million people in the Taipei metropolitan area. Understanding the spatial patterns of water quality trends in this watershed is an important agenda for management authorities. This study examined 7 sites in the watershed for water quality parameters regulated in the standard for drinking water source. The non-parametric seasonal Mann-Kendall-s test was used to determine significant trends for each parameter. Significant trends of increasing pH occurred at the sampling station in the uppermost stream watershed, and in total phosphorus at 4 sampling stations in the middle and downstream watershed. Additionally, the multi-scale land cover assessment and average land slope were used to explore the influence on the water quality in the watershed. Regression models for predicting water quality were also developed.Keywords: Seasonal Mann-Kendall's test, Flow-adjusted concentrations, Water quality trends, Land-use
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605474 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics
Authors: N. B. Mahesh Kumar, K. Premalatha
Abstract:
The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.
Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761473 Emergency Response Plan Establishment and Computerization through the Analysis of the Disasters Occurring on Long-Span Bridges by Type
Authors: Sungnam Hong, Sun-Kyu Park, Dooyong Cho, Jinwoong Choi
Abstract:
In this paper, a strategy for long-span bridge disaster response was developed, divided into risk analysis, business impact analysis, and emergency response plan. At the risk analysis stage, the critical risk was estimated. The critical risk was “car accident."The critical process by critical-risk classification was assessed at the business impact analysis stage. The critical process was the task related to the road conditions and traffic safety. Based on the results of the precedent analysis, an emergency response plan was established. By making the order of the standard operating procedures clear, an effective plan for dealing with disaster was formulated. Finally, a prototype software was developed based on the research findings. This study laid the foundation of an information-technology-based disaster response guideline and is significant in that it computerized the disaster response plan to improve the plan-s accessibility.
Keywords: Emergency response; Long-span bridge; Disaster management; Standard operating procedure; Ubiquitous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837472 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: Color moments, visual thing recognition system, SIFT, color SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035471 An Agent-based Model for Analyzing Interaction of Two Stable Social Networks
Authors: Masatora Daito, Hisashi Kojima
Abstract:
In this research, the authors analyze network stability using agent-based simulation. Firstly, the authors focus on analyzing large networks (eight agents) by connecting different two stable small social networks (A small stable network is consisted on four agents.). Secondly, the authors analyze the network (eight agents) shape which is added one agent to a stable network (seven agents). Thirdly, the authors analyze interpersonal comparison of utility. The “star-network "was not found on the result of interaction among stable two small networks. On the other hand, “decentralized network" was formed from several combination. In case of added one agent to a stable network (seven agents), if the value of “c"(maintenance cost of per a link) was larger, the number of patterns of stable network was also larger. In this case, the authors identified the characteristics of a large stable network. The authors discovered the cases of decreasing personal utility under condition increasing total utility.Keywords: Social Network, Symmetric Situation, Network Stability, Agent-Based Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536470 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain
Authors: Amal M. Alrayes, Hayat M. Ali
Abstract:
Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.
Keywords: Web 2.0, Higher education, Acceptance, Students’ perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310469 Visualization of Quantitative Thresholds in Stocks
Authors: Siddhant Sahu, P. James Daniel Paul
Abstract:
Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.
Keywords: Technical Analysis, Expert System, Law of demand, Stocks, Portfolio Analysis, Indian Automotive Sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090468 Knowledge Representation Based On Interval Type-2 CFCM Clustering
Authors: Myung-Won Lee, Keun-Chang Kwak
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.
Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621467 Distance Transmission Line Protection Based on Radial Basis Function Neural Network
Authors: Anant Oonsivilai, Sanom Saichoomdee
Abstract:
To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.
Keywords: radial basis function neural network, transmission lines protection, relaying, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367466 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling
Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami
Abstract:
Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.
Keywords: Bridge, deterioration mechanism, lifecycle, performance indicator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461465 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely, where the subspace of the covariance matrix is decomposed to separate the signal subspace from noise subspace. The decomposition is normally done by using either the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of the auto-correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. This paper considers the estimation of the multipath slow frequency hopping (FH) channel using noise space based method. In particular, an efficient method is proposed to estimate the multipath time delays by applying multiple signal classification (MUSIC) algorithm which is based on the null space extracted by the rank revealing LU (RRLU) factorization. As a result, precise information is provided by the RRLU about the numerical null space and the rank, (i.e., important tool in linear algebra). The simulation results demonstrate the effectiveness of the proposed novel method by approximately decreasing the computational complexity to the half as compared with RRQR methods keeping the same performance.
Keywords: Time Delay Estimation, RRLU, RRQR, MUSIC, LS-ESPRIT, LS-ESPRIT, Frequency Hopping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047464 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.
Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281463 Migration among Multicities
Authors: Ming Guan
Abstract:
This paper proposes a simple model of economic geography within the Dixit-Stiglitz-Iceberg framework that may be used to analyze migration patterns among three cities. The cost–benefit tradeoffs affecting incentives for three types of migration, including echelon migration, are discussed. This paper develops a tractable, heterogeneous-agent, general equilibrium model, where agents share constant human capital, and explores the relationship between the benefits of echelon migration and gross human capital. Using Chinese numerical solutions, we study the manifestation of echelon migration and how it responds to changes in transportation cost and elasticity of substitution. Numerical results demonstrate that (i) there are positive relationships between a migration-s benefit-and-wage ratio, (ii) there are positive relationships between gross human capital ratios and wage ratios as to origin and destination, and (iii) we identify 13 varieties of human capital convergence among cities. In particular, this model predicts population shock resulting from the processes of migration choice and echelon migration.
Keywords: Dixit-Stiglitz-Iceberg framework, elasticity , echelonmigration, trade-off
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478462 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree
Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman
Abstract:
In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286461 Data Mining Determination of Sunlight Average Input for Solar Power Plant
Authors: Fl. Loury, P. Sablonière, C. Lamoureux, G. Magnier, Th. Gutierrez
Abstract:
A method is proposed to extract faithful representative patterns from data set of observations when they are suffering from non-negligible fluctuations. Supposing time interval between measurements to be extremely small compared to observation time, it consists in defining first a subset of intermediate time intervals characterizing coherent behavior. Data projection on these intervals gives a set of curves out of which an ideally “perfect” one is constructed by taking the sup limit of them. Then comparison with average real curve in corresponding interval gives an efficiency parameter expressing the degradation consecutive to fluctuation effect. The method is applied to sunlight data collected in a specific place, where ideal sunlight is the one resulting from direct exposure at location latitude over the year, and efficiency is resulting from action of meteorological parameters, mainly cloudiness, at different periods of the year. The extracted information already gives interesting element of decision, before being used for analysis of plant control.
Keywords: Base Input Reconstruction, Data Mining, Efficiency Factor, Information Pattern Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533460 Synthesis and Characterization of Silver/Polylactide Nanocomposites
Authors: Kamyar Shameli, Mansor Bin Ahmad, Wan Md Zin Wan Yunus, Nor Azowa Ibrahim, Maryam Jokar, Majid Darroudi
Abstract:
Silver/polylactide nanocomposites (Ag/PLA-NCs) were synthesized via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were used as a silver precursor and reducing agent in the polylactide (PLA). The properties of Ag/PLA-NCs were studied as a function of the weight percentages of silver nanoparticles (8, 16 and 32 wt% of Ag-NPs) relative to the weight of PLA. The Ag/PLA-NCs were characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), electro-optical microscopy (EOM), UV-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). XRD patterns confirmed that Ag-NPs crystallographic planes were face centered cubic (fcc) type. TEM images showed that mean diameters of Ag-NPs were 3.30, 3.80 and 4.80 nm. Electro-optical microscopy revealed excellent dispersion and interaction between Ag-NPs and PLA films. The generation of silver nanoparticles was confirmed from the UVvisible spectra. FT-IR spectra showed that there were no significant differences between PLA and Ag/PLA-NCs films. The synthesized Ag/PLA-NCs were stable in organic solution over a long period of time without sign of precipitation.Keywords: Nanocomposites, Polylactide, Silver Nanoparticles, Sodium Borohydride, Transmission Electron Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557459 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell
Authors: Mahanijah Md Kamal., Dingli Yu
Abstract:
This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.
Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819458 Quantifying the Stability of Software Systems via Simulation in Dependency Networks
Authors: Weifeng Pan
Abstract:
The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.Keywords: Software stability, change propagation, design pattern, software maintenance, object-oriented (OO) software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682457 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464456 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: Noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993455 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat
Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh
Abstract:
Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility including albumin, globulin, glutenin and prolamin or gliadin. Gliadins are major components of the storage proteins in wheat endosperm. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, in terms of coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected for this study. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 93% of the accessions carried allele 210 bp, and only 8% did not any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.Keywords: Diploied wheat, gliadin, Triticum boeoticum, Triticum urartu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952454 Trace Emergence of Ants- Traffic Flow, based upon Exclusion Process
Authors: Ali Lemouari, Mohamed Benmohamed
Abstract:
Biological evolution has generated a rich variety of successful solutions; from nature, optimized strategies can be inspired. One interesting example is the ant colonies, which are able to exhibit a collective intelligence, still that their dynamic is simple. The emergence of different patterns depends on the pheromone trail, leaved by the foragers. It serves as positive feedback mechanism for sharing information. In this paper, we use the dynamic of TASEP as a model of interaction at a low level of the collective environment in the ant-s traffic flow. This work consists of modifying the movement rules of particles “ants" belonging to the TASEP model, so that it adopts with the natural movement of ants. Therefore, as to respect the constraints of having no more than one particle per a given site, and in order to avoid collision within a bidirectional circulation, we suggested two strategies: decease strategy and waiting strategy. As a third work stage, this is devoted to the study of these two proposed strategies- stability. As a final work stage, we applied the first strategy to the whole environment, in order to get to the emergence of traffic flow, which is a way of learning.Keywords: Ants system, emergence, exclusion process, pheromone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331453 Treatment of Inorganic Filler Surface by Silane-Coupling Agent: Investigation of Treatment Condition and Analysis of Bonding State of Reacted Agent
Authors: Hiroshi Hirano, Joji Kadota, Toshiyuki Yamashita, Yasuyuki Agari
Abstract:
It is well known that enhancing interfacial adhesion between inorganic filler and matrix resin in a composite lead to favorable properties such as excellent mechanical properties, high thermal resistance, prominent electric insulation, low expansion coefficient, and so on. But it should be avoided that much excess of coupling agent is reacted due to a negative impact of their final composite-s properties. There is no report to achieve classification of the bonding state excepting investigation of coating layer thickness. Therefore, the analysis of the bonding state of the coupling agent reacted with the filler surface such as BN particles with less functional group and silica particles having much functional group was performed by thermal gravimetric analysis and pyrolysis GC/MS. The reacted number of functional groups on the silane-coupling agent was classified as a result of the analysis. Thus, we succeeded in classifying the reacted number of the functional groups as a result of this study.Keywords: Inorganic filler, boron nitride, surface treatment, coupling agent, analysis of bonding state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5046452 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.
Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898451 Vocal Communication in Sooty-headed Bulbul; Pycnonotus aurigaster
Authors: Surakan Payakkhabut
Abstract:
Studies of vocal communication in Sooty-headed Bulbul were carried out from January to December 2011. Vocal recordings and behavioral observations were made in their natural habitats at some localities of Lampang, Thailand. After editing, cuts of high quality recordings were analyzed with the help of Avisoft- SASLab Pro (version 4.40) software. More than one thousand element repertoires in five groups were found within two vocal structures. The two structures were short sounds with single element and phrases composed of elements, the frequency ranged from 1-10 kHz. Most phrases were composed of 2 to 5 elements that were often dissimilar in structure, however, these phrases were not as complex as song phrases. The elements and phrases were combined to form many patterns. The species used ten types of calls; i.e. alert, alarm, aggressive, begging, contact, courtship, distress, exciting, flying and invitation. Alert and contact calls were used more frequently than other calls. Aggressive, alarm and distress calls could be used for interspecific communication among some other bird species in the same habitats.Keywords: Vocal communication, Call, Bird, Sooty-headed Bulbul
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635450 Stochastic Modeling and Combined Spatial Pattern Analysis of Epidemic Spreading
Authors: S. Chadsuthi, W. Triampo, C. Modchang, P. Kanthang, D. Triampo, N. Nuttavut
Abstract:
We present analysis of spatial patterns of generic disease spread simulated by a stochastic long-range correlation SIR model, where individuals can be infected at long distance in a power law distribution. We integrated various tools, namely perimeter, circularity, fractal dimension, and aggregation index to characterize and investigate spatial pattern formations. Our primary goal was to understand for a given model of interest which tool has an advantage over the other and to what extent. We found that perimeter and circularity give information only for a case of strong correlation– while the fractal dimension and aggregation index exhibit the growth rule of pattern formation, depending on the degree of the correlation exponent (β). The aggregation index method used as an alternative method to describe the degree of pathogenic ratio (α). This study may provide a useful approach to characterize and analyze the pattern formation of epidemic spreadingKeywords: spatial pattern epidemics, aggregation index, fractaldimension, stochastic, long-rang epidemics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680449 An Experimental Study on Development of the Connection System of Concrete Barriers Applicable to Modular Bridge
Authors: Seung-Kyung Kye, Sang-Seung Lee, Dooyong Cho, Sun-Kyu Park
Abstract:
Although many studies on the assembly technology of the bridge construction have dealt mostly with on the pier, girder or the deck of the bridge, studies on the prefabricated barrier have rarely been performed. For understanding structural characteristics and application of the concrete barrier in the modular bridge, which is an assembly of structure members, static loading test was performed. Structural performances as a road barrier of the three methods, conventional cast-in-place(ST), vertical bolt connection(BVC) and horizontal bolt connection(BHC) were evaluated and compared through the analyses of load-displacement curves, strain curves of the steel, concrete strain curves and the visual appearances of crack patterns. The vertical bolt connection(BVC) method demonstrated comparable performance as an alternative to conventional cast-in-place(ST) while providing all the advantages of prefabricated technology. Necessities for the future improvement in nuts enforcement as well as legal standard and regulation are also addressed.Keywords: Modular Bridge, Concrete Barrier, Bolt Connection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719448 Exploiting Global Self Similarity for Head-Shoulder Detection
Authors: Lae-Jeong Park, Jung-Ho Moon
Abstract:
People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.
Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403447 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854