Search results for: Flow simulation
3858 Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities
Authors: Shiferaw R. Jufar, Rong F. Huang, Ching M. Hsu
Abstract:
The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.Keywords: Acoustic excitation, double–concentric jets, flow control, swirling jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19813857 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control
Authors: T. Hussein
Abstract:
In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37393856 Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan
Authors: Y.C. Yeh, Y.S. Tsay, C.M. Chiang
Abstract:
A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.
Keywords: Effective Moisture Penetration Depth Method, Moisture Buffering Effect, Interior Material, Green Material, EnergyPlus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15803855 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: Terrestrial-satellite networks, latency, on-orbit satellite payload, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8883854 Simulation of Inverter Fed Induction Motor Drive with LabVIEW
Authors: R. Gunabalan, S. Immanuel Prabakaran, J. Reegan, S. Ganesh
Abstract:
This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated.
Keywords: Induction motor, LabVIEW, State model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85763853 Gas Lift Optimization Using Smart Gas Lift Valve
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie
Abstract:
Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.
Keywords: Effect of gas lift valve port size, effect water cut, and vertical flow performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24573852 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations
Authors: M. Chaichanyut, S. Tungjitkusolmun
Abstract:
This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19593851 Flow Modeling and Runner Design Optimization in Turgo Water Turbines
Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis
Abstract:
The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40573850 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.
Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23353849 Scalable Cloud-Based LEO Satellite Constellation Simulator
Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi
Abstract:
Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based network simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.Keywords: LEO, Cloud Computing, Constellation, Satellite, Network Simulation, Netfilter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25743848 Optimization Approaches for a Complex Dairy Farm Simulation Model
Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu
Abstract:
This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21103847 MATLAB/SIMULINK Based Model of Single- Machine Infinite-Bus with TCSC for Stability Studies and Tuning Employing GA
Authors: Sidhartha Panda, Narayana Prasad Padhy
Abstract:
With constraints on data availability and for study of power system stability it is adequate to model the synchronous generator with field circuit and one equivalent damper on q-axis known as the model 1.1. This paper presents a systematic procedure for modelling and simulation of a single-machine infinite-bus power system installed with a thyristor controlled series compensator (TCSC) where the synchronous generator is represented by model 1.1, so that impact of TCSC on power system stability can be more reasonably evaluated. The model of the example power system is developed using MATLAB/SIMULINK which can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, the parameters of the TCSC controller are optimized using genetic algorithm. The non-linear simulation results are presented to validate the effectiveness of the proposed approach.
Keywords: Genetic algorithm, MATLAB/SIMULINK, modelling and simulation, power system stability, single-machineinfinite-bus power system, thyristor controlled series compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165133846 A Computational Stochastic Modeling Formalism for Biological Networks
Authors: Werner Sandmann, Verena Wolf
Abstract:
Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.
Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15793845 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow
Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim
Abstract:
Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11063844 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures
Authors: Ruediger Schmidt, Thang Duy Vu
Abstract:
Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.
Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20023843 Power Flow Tracing Based Reactive Power Ancillary Service (AS) in Restructured Power Market
Authors: M. Susithra, R. Gnanadass
Abstract:
Ancillary services are support services which are essential for humanizing and enhancing the reliability and security of the electric power system. Reactive power ancillary service is one of the important ancillary services in a restructured electricity market which determines the cost of supplying ancillary services and finding of how this cost would change with respect to operating decisions. This paper presents a new formation that can be used to minimize the Independent System Operator (ISO)’s total payment for reactive power ancillary service. The modified power flow tracing algorithm estimates the availability of reserve reactive power for ancillary service. In order to find optimum reactive power dispatch, Biogeography based optimization method (BPO) is proposed. Market Reactive Clearing Price (MRCP) is then estimated and it encourages generator companies (GENCOs) to participate in an ancillary service. Finally, optimal weighting factor and real time utilization factor of reactive power give the minimum ISO’s total payment. The effectiveness of proposed design is verified using IEEE 30 bus system.
Keywords: Biogeography based optimization method, Power flow tracing method, Reactive generation capability curve and Reactive power ancillary service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32353842 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device
Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang
Abstract:
This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.
Keywords: CFD modeling, validation, microsphere generation, modified T-junction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25683841 Analytical Solution for Compressible Gas Flow Inside a Two-Dimensional Poiseuille Flow in Microchannels with Constant Heat Flux Including the Creeping Effect
Authors: Amir Reza Ghahremani, Salman SafariMohsenabad, Mohammad Behshad Shafii
Abstract:
To achieve reliable solutions, today-s numerical and experimental activities need developing more accurate methods and utilizing expensive facilities, respectfully in microchannels. The analytical study can be considered as an alternative approach to alleviate the preceding difficulties. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. The perturbation theory has been used by many researchers to analyze microflows. In present work, a compressible microflow with constant heat flux boundary condition is analyzed. The flow is assumed to be fully developed and steady. The Mach and Reynolds numbers are also assumed to be very small. For this case, the creeping phenomenon may have some effect on the velocity profile. To achieve robustness solution it is assumed that the flow is quasi-isothermal. In this study, the creeping term which appears in the slip boundary condition is formulated by different mathematical formulas. The difference between this work and the previous ones is that the creeping term is taken into account and presented in non-dimensionalized form. The results obtained from perturbation theory are presented based on four non-dimensionalized parameters including the Reynolds, Mach, Prandtl and Brinkman numbers. The axial velocity, normal velocity and pressure profiles are obtained. Solutions for velocities and pressure for two cases with different Br numbers are compared with each other and the results show that the effect of creeping phenomenon on the velocity profile becomes more important when Br number is less than O(ε).Keywords: Creeping Effect, Microflow, Slip, Perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24713840 A Study on Metal Hexagonal Honeycomb Crushing Under Quasi-Static Loading
Authors: M. Zarei Mahmoudabadi, M. Sadighi
Abstract:
In the study of honeycomb crushing under quasistatic loading, two parameters are important, the mean crushing stress and the wavelength of the folding mode. The previous theoretical models did not consider the true cylindrical curvature effects and the flow stress in the folding mode of honeycomb material. The present paper introduces a modification on Wierzbicki-s model based on considering two above mentioned parameters in estimating the mean crushing stress and the wavelength through implementation of the energy method. Comparison of the results obtained by the new model and Wierzbicki-s model with existing experimental data shows better prediction by the model presented in this paper.
Keywords: Crush strength, Flow stress, Honeycomb, Quasistatic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23023839 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow
Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden
Abstract:
This study documents the hydrodynamic characteristics of a recirculating water flume in preparation for experimental testing of horizontal axis tidal stream turbine models. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1, with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, we arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power-law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.
Keywords: Acoustic Doppler velocimetry, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753838 Simulation Studies on Concentrating Type Solar Cookers
Authors: V. K. Krishnan, T. Balusamy
Abstract:
A solar dish collector has been designed, fabricated and tested for its performance on 10-03-2015 in Salem, Tamilnadu, India. The experiments on cooking vessels of coated and un-coated with 5 Liters capacity have been used for cooking Rice. The results are shown in graphs. The solar cooker is always capable of cooking food within the expected length of time and based on the solar radiation levels. With minimum cooking power, the coated pressure cooker of 5 Liters capacity cooks the food at faster manner. This is due to the conductivity of the coating material provided in the cooker.Keywords: Solar cooker, solar concentrator type, thermal performance, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23103837 Virtual Assembly in a Semi-Immersive Environment
Authors: Emad S. Abouel Nasr, Abdulaziz M. El-Tamimi, Mustufa H. Abidi, Abdulrahman M. Al-Ahmari
Abstract:
Virtual Assembly (VA) is one of the key technologies in advanced manufacturing field. It is a promising application of virtual reality in design and manufacturing field. It has drawn much interest from industries and research institutes in the last two decades. This paper describes a process for integrating an interactive Virtual Reality-based assembly simulation of a digital mockup with the CAD/CAM infrastructure. The necessary hardware and software preconditions for the process are explained so that it can easily be adopted by non VR experts. The article outlines how assembly simulation can improve the CAD/CAM procedures and structures; how CAD model preparations have to be carried out and which virtual environment requirements have to be fulfilled. The issue of data transfer is also explained in the paper. The other challenges and requirements like anti-aliasing and collision detection have also been explained. Finally, a VA simulation has been carried out for a ball valve assembly and a car door assembly with the help of Vizard virtual reality toolkit in a semi-immersive environment and their performance analysis has been done on different workstations to evaluate the importance of graphical processing unit (GPU) in the field of VA.Keywords: Collision Detection, Graphical Processing Unit (GPU), Virtual Reality (VR), Virtual Assembly (VA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29063836 A Sliding Mesh Technique and Compressibility Correction Effects of Two-equation Turbulence Models for a Pintle-Perturbed Flow Analysis
Authors: J. Y. Heo, H. G. Sung
Abstract:
Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.
Keywords: Pintle, sliding mesh, turbulent model, compressibility correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22653835 Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet
Authors: Yisheng Rong, Jian Sun, Weiqiang Liu, Renjun Zhan
Abstract:
A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.
Keywords: opposing jet, aerodynamic heating, total pressure ratio, thermal protection system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20683834 Radionuclides Transport Phenomena in Vadose Zone
Authors: R. Testoni, R. Levizzari, M. De Salve
Abstract:
Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behavior in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.
Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25203833 Preoperative to Intraoperative Space Registration for Management of Head Injuries
Authors: M. Gooroochurn, M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
A registration framework for image-guided robotic surgery is proposed for three emergency neurosurgical procedures, namely Intracranial Pressure (ICP) Monitoring, External Ventricular Drainage (EVD) and evacuation of a Chronic Subdural Haematoma (CSDH). The registration paradigm uses CT and white light as modalities. This paper presents two simulation studies for a preliminary evaluation of the registration protocol: (1) The loci of the Target Registration Error (TRE) in the patient-s axial, coronal and sagittal views were simulated based on a Fiducial Localisation Error (FLE) of 5 mm and (2) Simulation of the actual framework using projected views from a surface rendered CT model to represent white light images of the patient. Craniofacial features were employed as the registration basis to map the CT space onto the simulated intraoperative space. Photogrammetry experiments on an artificial skull were also performed to benchmark the results obtained from the second simulation. The results of both simulations show that the proposed protocol can provide a 5mm accuracy for these neurosurgical procedures.Keywords: Image-guided Surgery, Multimodality Registration, Photogrammetry, Preoperative to Intraoperative Registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15313832 A Virtual Simulation Environment for a Design and Verification of a GPGPU
Authors: Kwang Y. Lee, Tae R. Park, Jae C. Kwak, Yong S. Koo
Abstract:
When a small H/W IP is designed, we can develop an appropriate verification environment by observing the simulated signal waves, or using the serial test vectors for the fixed output. In the case of design and verification of a massive parallel processor with multiple IPs, it-s difficult to make a verification system with existing common verification environment, and to verify each partial IP. A TestDrive verification environment can build easy and reliable verification system that can produce highly intuitive results by applying Modelsim and SystemVerilog-s DPI. It shows many advantages, for example a high-level design of a GPGPU processor design can be migrate to FPGA board immediately.Keywords: Virtual Simulation, Verification, IP Design, GPGPU
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16613831 Experimental Study of Unconfined and Confined Isothermal Swirling Jets
Authors: Rohit Sharma, Fabio Cozzi
Abstract:
A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.
Keywords: Acoustic probes, 3C-2D particle image velocimetry, PIV, precessing vortex core, PVC, recirculation zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14253830 Realistic Simulation Methodology in Brazil’s New Medical Education Curriculum: Potentialities
Authors: Cleto J. Sauer Jr
Abstract:
Introduction: Brazil’s new national curriculum guidelines (NCG) for medical education were published in 2014, presenting active learning methodologies as a cornerstone. Simulation was initially applied for aviation pilots’ training and is currently applied in health sciences. The high-fidelity simulator replicates human body anatomy in detail, also reproducing physiological functions and its use is increasing in medical schools. Realistic Simulation (RS) has pedagogical aspects that are aligned with Brazil’s NCG teaching concepts. The main objective of this study is to carry on a narrative review on RS’s aspects that are aligned with Brazil’s new NCG teaching concepts. Methodology: A narrative review was conducted, with search in three databases (PubMed, Embase and BVS) of studies published between 2010 and 2020. Results: After systematized search, 49 studies were selected and divided into four thematic groups. RS is aligned with new Brazilian medical curriculum as it is an active learning methodology, providing greater patient safety, uniform teaching, and student's emotional skills enhancement. RS is based on reflective learning, a teaching concept developed for adult’s education. Conclusion: RS is a methodology aligned with NCG teaching concepts and has potential to assist in the implementation of new Brazilian medical school’s curriculum. It is an immersive and interactive methodology, which provides reflective learning in a safe environment for students and patients.
Keywords: Curriculum, high-fidelity simulator, medical education, realistic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5693829 Study Forecast Indoor Acoustics. A Case Study: the Auditorium Theatre-Hotel “Casa Tra Noi“
Authors: D. Germanò, D. Plutino, G. Cannistraro
Abstract:
The theatre-auditorium under investigation following the highly reflective characteristics of materials used in it (marble, painted wood, smooth plaster, etc), architectural and structural features of the Protocol and its intended use (very multifunctional: Auditorium, theatre, cinema, musicals, conference room) from the analysis of the statement of fact made by the acoustic simulation software Ramsete and supported by data obtained through a campaign of acoustic measurements of the state of fact made on the spot by a Fonomet Svantek model SVAN 957, appears to be acoustically inadequate. After the completion of the 3D model according to the specifications necessary software used forecast in order to be recognized by him, have made three simulations, acoustic simulation of the state of and acoustic simulation of two design solutions. Improved noise characteristics found in the first design solution, compared to the state in fact consists therefore in lowering Reverberation Time that you turn most desirable value, while the Indicators of Clarity, the Baricentric Time, the Lateral Efficiency, Ratio of Low Tmedia BR and defined the Speech Intelligibility improved significantly. Improved noise characteristics found instead in the second design solution, as compared to first design solution, is finally mostly in a more uniform distribution of Leq and in lowering Reverberation Time that you turn the optimum values. Indicators of Clarity, and the Lateral Efficiency improve further but at the expense of a value slightly worse than the BR. Slightly vary the remaining indices.Keywords: Indoor, Acoustic, Acoustic simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4194