
Scalable Cloud-Based LEO Satellite
Constellation Simulator

Karim Sobh , Khaled El-Ayat , Fady Morcos, Amr El-Kadi

Abstract—Distributed applications deployed on LEO satellites
and ground stations require substantial communication between
different members in a constellation to overcome the earth
coverage barriers imposed by GEOs. Applications running on LEO
constellations suffer the earth line-of-sight blockage effect. They
need adequate lab testing before launching to space. We propose
a scalable cloud-based network simulation framework to simulate
problems created by the earth line-of-sight blockage. The framework
utilized cloud IaaS virtual machines to simulate LEO satellites
and ground stations distributed software. A factorial ANOVA
statistical analysis is conducted to measure simulator overhead on
overall communication performance. The results showed a very low
simulator communication overhead. Consequently, the simulation
framework is proposed as a candidate for testing LEO constellations
with distributed software in the lab before space launch.

Keywords—LEO, Cloud Computing, Constellation, Satellite,
Network Simulation, Netfilter.

I. INTRODUCTION

LOW Earth Orbits (LEO) have recently gained in
popularity in the area of satellite communication

compared with Geostationary orbit satellites (GEO), mainly
due to their proximity to Earth. GEOs have been the
traditional choice for communication satellites as they allow
uninterrupted communication between the ground station and
the satellite. On the other hand, GEOs are equatorial orbits;
thus have poor polar coverage, and since they orbit at roughly
35,000 km above Earth, they are understandably expensive to
launch, require high power for signal transmission, and incur
large transmission delays.

Although LEOs sacrifice the wide coverage of GEOs,
an LEO constellation allows full earths coverage, shorter
communication delays, and substantially lower launch cost
and lower power requirements. The inherent weakness of
LEOs, however, is the limited instantaneous field of view
(IFOV), high orbital velocity with short communication time
windows with a ground station or receiver. To utilize LEOs
for efficient communication, a satellite constellation is used,
taking advantage of inter-satellite link communication to
relay data among constellation members[16]. If a satellite
handling a communication link moves out of the range of its

Karim Sobh is with the Department of Computer Science and Engineering
of the American University in Cairo (e-mail: kmsobh@aucegypt.edu).

Khaled El-Ayat is with the Department of Computer Science and
Engineering of the American University in Cairo (phone: +20226152975,
e-mail: kalayat@aucegypt.edu).

Fady Morcos is with the School of Sciences and Engineering
of the American University in Cairo (phone: +20226153059, e-mail:
fady.michel@aucegypt.edu)

Amr El-Kadi is with the Department of Computer Science and Engineering
of the American University in Cairo (phone: +20226152988, e-mail:
elkadi@aucegypt.edu).

control center, the link is passed on to another constellation
member that has line of sight to the the control center, thus
allowing uninterrupted communication. Note that line of sight
connectivity is a problem between ground stations and orbiting
satellites, as well as between different satellite constellation
members [9][20][17]. Consequently, constellation design is
a complex process that requires defining several principal
factors, as detailed in Wertz [24]. The goal of the constellation
designer is to minimize the cost while meeting all functional
and connectivity requirements.

LEO satellites by nature host a distributed software
environment. A set of computing nodes, LEO satellites, that
collaborate through message exchange over a communication
medium to achieve a common goal. Since it is not practical to
test the constellation in space, a simulation is used to simulate
the line-of-sight blockage , that will be experienced by the
target distributed application running on LEO members.

The proposed simulator will be based on Cloud Computing,
which is a leading computing technology domain that allows
the consolidation of distributed computing resources and
making them available in a utility oriented approach as a
shared-as-a-service to customers. The Cloud Infrastructure
as a Service (IaaS) model, based on virtualization, can be
utilized to simulate an LEO constellation. With the help of
the scalability features of cloud IaaS environments, large
constellation of satellites and ground stations can be simulated
[13][12][7][18][6][10].

An Analysis of Variance (ANOVA) factorial experiment
[15][14] was used to test the factors affecting the simulator
network throughput. The ANOVA is a mathematical statistical
model capable of calculating the effects of a set of factors, in
a system or a process, on a specific observed yield. ANOVA
will help us to measure the effect of embedding the core of
the proposed simulator into the constellation testbed network
layer.

II. BACKGROUND

A. LEO Communication

Applications deployed on LEO satellites are getting more
mature and are running on top of modern operating systems
like the open source Linux operating system. Hence, the need
for a popular network application protocols such as TCP
and UDP is growing, to be able to meet the needs and the
requirements of such applications. Such protocols needed the
existence of the Internet Protocol (IP) to be able to operate. In
general, the trend is to enable a satellite to communicate over
internet protocol to be able to transparently use ready made

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1460International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



applications and libraries that are based on internet application
layer protocols, such as HTTP and FTP. Thus, for the proposed
simulator to be of a benefit to the target environment, all
communication aspects will be based on the internet protocol,
mainly TCP and UDP [25]. In the related work section, we
will be enumerating examples of already existing instances of
constellations utilizing the internet protocol and their target
missions.

B. Cloud Computing
Cloud computing is a mechanism for consolidating

computing resources and sharing them as services. This
concept of utility computing has been there since the
mainframe was invented, but limited advances in computing
resources constrained its evolution and spread. Cloud
computing is all about the generic ability to consolidate
any number of heterogeneous resources and share them
transparently on demand. With the help of cloud middleware,
a management environment for computing resources,
applications and users can share computing resources in a
grid-like model, where the user of the resource does not
need to know the details and the mechanisms of availing
the resource. The keyword here is isolation, whereby an
application using a resource is guaranteed the dedication of
the resource to perform a specific task.

Cloud IaaS environments, which are based primarily on
virtualization, are a good deployment environment for our
proposed simulation framework, where satellites and ground
stations distributed software can be deployed on virtual
machines. Four important factors are behind our decision
of using cloud environments, which are the underlying
deployment infrastructure, which are virtualization, scalability,
isolation, and elasticity.

1) Virtualization: virtualization enables the ease of
creating virtual machines on cloud environments, which
correspond to constellation objects, satellites and ground
stations. This allows the ability of virtual machines
configuration changes based on the role. Moreover,
virtual machines templates can be created with all the
software needed being installed once, and then replicate
as needed. Administration and deployment is made easy
and flexible for changes as requirements change.

2) Scalability: cloud scalability allows adding and
removing constellation objects by acquiring and
releasing virtual resources, which will lead to better
manageability and utilization of the resources used
per constellation object. Basically, scalability will
allow building huge constellations with the maximum
utilization possible, and less administration effort for
adding the corresponding resources.

3) Isolation: it is very critical to be able to control mission
critical shared resources like network in the simulation
environment, and to make sure that the bandwidth of the
target network is only utilized by the simulator virtual
machines, which can be achieved with cloud virtual
networks.

4) Elasticity: Cloud environments allow for transparent
expansion and shrinkage based on the resources needed,

which will generally achieve better space, power, and
cooling utilization.

Of course, the proposed simulation environment can be
deployed on a traditional cluster, yet all of the above
mentioned characteristics will not be achievable.

III. RELATED WORK

In this section, work related to satellite constellations and
their communication will be discussed. Nelson [17] presented
an approach for designing a nearly constant coverage CubeSat
constellation. It established a communication link between
Tenby, Pembrokeshire, Wales and tactically chosen locations
in the United States. The paper presents a thorough study of
LEO orbits in general, and in inter-satellite communication,
taking into consideration all aspects of orbit calculation
methods, amateur radio antenna types, noise handling,
multi-hop communication, and most importantly line-of-sight
considerations. The Satellite Tool Kit software, STK, was
used to design orbits and test constellations coverage, however
software execution of satellite communication between
different satellites of the constellation to establish constant
coverage is not mentioned.

Smalarz [20] used the STK spatial and temporal analysis
features in conjunction with MATLAB graphical interface
SATCAT to simulate the data relay between the satellites of
a CubeSat constellation. This approach targeted improving
relay performance and the increase of communication duration
between the constellations CubeSats and ground stations. It
was shown that applying the communication relay through the
constellation’s satellites improves the relay time dramatically,
and increases the number of accesses. It is important to note
that these results were achieved by simulation. An added
benefit would be an external transparent network simulator
that can simulate the line-of-sight earth blockage effect.

Agogino et al. [6] introduced the idea of deploying
decentralized distributed agent-based resource sharing
mechanisms in CubeSat constellations. The paper proposed
different types of agents that can be deployed on CubeSats
that perform small tasks whose results can be shared and
relayed to other agents for further processing, analogous to
peer-based distributed systems. It is noted that the introduction
of the line-of-sight earth blockage effect simulation would be
of great value.

Muri and McNair [16] presented a comprehensive historical
study of satellite constellations from 1972, such as OSCAR
satellites equipped with amateur radio communication,
enumerating a series of satellite projects. They also
discussed the evolution of the satellite communication and
inter-networking, and the introduction of Internet Protocol
Layering in space communication, delay tolerance, radio
frequency allocation, optical communication, and applications
and orbital properties. The paper indicates the need for
adopting internet protocols in space.

Challa and McNair [10] proposed a torrent like protocol.
The CubeSat Torrent Protocol (CST) aims at increasing
downlink and uplink speeds of large files by simultaneously
downloading file portions from different CubeSats. A high

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1461International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



speed inter-satellite communication link of 10 Mbps is
assumed to support data replication. A simulation for
the data replication protocol is implemented in a custom
communication simulation environment. Gains in download
and upload time is improved by a factor of the constellation
size. However, line-of-sight earth blockage effect is marginally
addressed via peers network probing.

An overview of the IRIDIUM constellation for global
mobile phone coverage is presented by Pratt et al. [19]
and Muri et al. [17]. The LEO IRIDIUM constellation
constitutes 66 large satellites arranged in 11 planes. Each
satellite maintains up to four inter-satellite links to its
neighbours. Members of the IRIDIUM constellation are
satellites, gateways, and users handsets. A satellite in direct
contact with initiating handsets acts as a gateway, and as a
repeater routing phone call traffic. Ground stations are used
as a bridge to the public telephone system, making it possible
to route a call between two handsets through an IRIDIUM
satellite.

QB50 is a good example of a CubeSat Constellation that
will not benefit from the proposed simulation framework.
Bedon et al. [8] proposed two constellation topologies for
QB50, which were simulated and tested with respect to the
application protocol used for communication, namely TCP
versus UDP. In the two topologies all the CubeSats in the
QB50 constellation are moving in the same orbit. The first
topology is a ring of 50 CubeSats with an equal distance
separating them, while the second topology is a string of
CubeSats 10,000 KM long making the constellation look
like a train rather than a ring. The CubeSats in QB50
constellation communicate with neighbors, successor and
predecessor CubeSats. Data travels through the constellation
until it reaches the closest CubeSat to the destination ground
station. In that sense, the line-of-sight earth blockage effect
has no significance on the constellation.

IV. MOTIVATION AND PROBLEM DEFINITION

Recent proposed LEO constellations require the
collaboration of member satellites and ground stations
to share mission tasks and objectives. This can be realized by
the deployment of distributed software on-board the satellites,
and using inter-satellite link communication and data relay for
execution and processing of mission plan [16][19][21]. Our
motivation is to build a low level scalable network simulator
capable of simulating line-of-sight earth blockage effects on
members of the constellation, using the Internet Protocol (IP)
as their communication backbone.

The main problem being tackled is that distributed
applications running on a constellation need to account for
all communication failures and outages between different
constellation members. A transparent low network overhead
simulator is proposed to simulate all network outages resulting
from the earth line-of-sight blockages, making them appear
to the constellation objects as realistic as possible. Moreover,
the target distributed application should not be aware of the
existence of the network simulator, and need to be deployed
on the simulation environment without the need for any code
updates or amendments to suit the simulation environment.

V. PROPOSED SIMULATION FRAMEWORK

A. Concept

The idea is to build a cloud environment based on the
IaaS model to simulate LEO constellations. Each object in
the target constellation environment will be represented by a
virtual machine in the cloud environment, and all of the virtual
machines will be connected via a virtual network. Three types
of objects exist in our environment: Satellite, Ground Station,
and Earth.

Objects of type satellite are represented by virtual machines
and can communicate with other objects of either type; satellite
or ground station. A constellation is built up of more than
one constellation object, satellite or ground station, without
any upper bound on the number of objects. Objects of type
ground station are represented by virtual machines, and can
communicate with other constellation objects as well.

Fig. 1: Simulator Overall View

Fig. 1 illustrates the overall view of the simulation
environment and the communication mechanisms between
constellation members having the earth as their gateway.
Only one instance of the Earth object must exist in the
constellation environment, and is represented by a dedicated
virtual machine. The Earth virtual machine will hold the real
simulation of the traffic. The earth VM is responsible for
simulating the line-of-sight between the different constellation
objects. The virtual machine that will hold the earth object will
host a Netfilter router [23][11] that will enable routing traffic
between any two constellation objects. Any two objects that
need to communicate are configured to use the earth object
as a gateway, without communicating directly; no two objects
of type satellite or ground station can communicate directly
without routing through the earth object.

The SGP4 algorithm [2][22] will be used to calculate the
locations of each object in the constellation based on their
two-line elements. Based on the calculation, the line-of-sight
between any 2 objects that need to communicate will be
calculated; in case the two communicating objects have a clear

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1462International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



line-of-sight, the earth router will allow the flow of the traffic
between them, else it will deny it to simulate the blockage
effect of the earth between the two objects. The blockage
effect can be observed in Fig. 1, where the red arrow represents
denied communication between Sat9 and Sat4 due to the earth
blockage effect. On the other hand, the blue arrows represent
the line-of-sight clearance between Sat3 and Sat4.

B. Overall View

The simulator is built up of a number of subsystems. Fig.
2 shows the different subsystems of the simulator as well as
their high level interaction to achieve a common goal, taking
into consideration the earth’s line-of-sight blockage effect. At
the core of the simulator, the line-of-sight daemon resides
to communicate with the back-end database, and serve other
simulator components. The line-of-sight daemon is the most
important component of the simulator, and it is deployed on
the Earth virtual machine. The other simulator components,
described in Fig. 2, are the back-end database, Cloud
Integration Module, SGP4 Integration Module, Netfilter Linux
Kernel Extension [23][11], Cesium-Based GUI Simulator [3],
and the Web Administration Console.

Fig. 2: Simulator Main Subsystems

C. Simulator Subsystems

1) Constellation Back-end Database: Constellation
configuration data is stored in a back-end MySQL [4]
database. A constellation is built up of satellites and ground
stations. Satellites are defined by their two-line elements, from
which their location at any point in time can be calculated.
Ground stations are also members of constellations, and are
defined by their Cartesian attributes. Constellation satellites
and ground stations are mapped to cloud virtual machines,
together with their network attributes definition. All of this is
stored in the back-end relational database.

2) Cloud Integration Module: The cloud integration
module is used to import cloud virtual machines configuration
and network attributes into the simulator back-end database.
This allows linking virtual machines to different satellites and
ground stations. The integration module import data from the
cloud middleware through open web service interfaces.

3) SGP4 Integration Module: The SGP4 is an open source
C++ library that calculates the Cartesian attributes of a
satellite based on its two-line elements and time. This module
instantiates SGP4 objects, and passes the two line elements
of the satellites to it to calculate and store their Cartesian
attributes in an array of attributes, together with the ground
stations Cartesian attributes.

4) Line-of-Sight Daemon: This is one of two main core
components of the simulator. The daemon is responsible for
calculating a line-of-sight matrix between all satellites and
ground stations in a constellation. The line-of-sight daemon
generates a matrix of numbers representing the distance
between each satellite and/or ground station in the target
constellation. A cell in the matrix that has a distance of
-1 indicates that the earth is in the way. Each constellation
has its own line-of-sight matrix. The daemon will be catering
to both the Linux Netfilter routing engine extension and the
Cesium GUI simulator. The daemon injects the line-of-sight
matrix into the Netfilter Kernel extension character device
buffer, moving the data from user space to kernel space.
Two web service interfaces are in place to be utilized by the
Cesium GUI front-end APIs, to fetch satellite locations and
their movements. The administration console will also utilize
the web services interfaces to display the line-of-sight matrices
for monitoring purposes by administrators.

5) Netfilter Kernel Module Extension: A Netfilter Linux
Kernel Module Extension is at the heart of the simulator.
The module has a character device that is considered the data
entry point. The line-of-sight daemon injects the line-of-sight
matrix to the Netfilter hook character device periodically. The
Netfilter hook is basically a hook into the Network IP layer. All
packets going through the network stack are intercepted and
passed to the hook routine before routing decisions and further
network packet processing. The hook extracts the source and
destination addresses of each network packet and looks them
up from the line-of-sight matrix. If any of the packet’s source
or destination are not found in the matrix, the packet is passed
to the higher network stack level. On the other hand, if the
source and the destination are found in the line-of-sight matrix,
the corresponding value representing the distance between
them is checked, and if the value is greater than 0 the packet is
passed to the higher network stack level, otherwise the packet
is dropped.

6) Cesium GUI APIs Front-end Integration: Cesium [3] is
a client side javascript based framework for simulating the
earth and objects rotating around it, as well as locations on the
earth. An integration interface based on Ajax (Asynchronous
JavaScript and XML) is built to allow the simulator to
fetch satellite locations from the line-of-sight daemon. The
client side application probes the line-of-sight daemon web
service interfaces iteratively and periodically, and the retrieved
coordinates are used to move the satellites in their orbits

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1463International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



around the earth.
7) Administration Console: The administration console is

a web application used to create constellations and launch
the Cesium simulator GUI. It also allows the administrator to
inspect the line-of-sight matrices by initiating Ajax calls to the
line-of-sight daemon. Moreover, the administrator is capable
of mapping cloud virtual machines to constellation objects.
The administration console is a traditional PHP/MySQL web
application deployed on an Apache web server [1].

D. Framework Workflow

The simulator environment is deployed over a cloud
infrastructure. A private IaaS, Infrastructure-as-a-Service,
cloud model is used to serve the constellation simulation.
Using IaaS, we are able to use virtual machines to represent
satellites, ground stations, and the earth. Each virtual machine
is a completely independent entity with its own OS running on
it. A cloud virtual network is in place to allow communication
between virtual machines.

The Netfilter simulator lies at the core of the environment,
and is deployed on the earth virtual machine. As described
earlier, the configuration of satellites and ground stations
locations, as well as their linkage to the cloud virtual machines
is done using the administrative console prior to starting
simulation.

Fig. 3: Simulator Workflow

The internal details of the workflow of the simulator
is illustrated in Fig. 3. A userland process daemon is in
place to generate the line-of-sight matrix. The userland
daemon fetches the two-line elements of the satellites and the
cartesian coordinates of the ground stations of the running
constellations from the back-end MySQL database, and with
the help of the SGP4 library the locations of the satellites
and the ground stations are being calculated, based on a
time parameter passed to the SGP4 library together with the
two-line elements. A line-of-sight matrix is generated based on
a line-of-sight algorithm that calculates the visibility between
each two objects in the constellation. The cell in the matrix
corresponding to any two objects in the constellation is set to

the distance calculated, if there is a clear line-of-sight between
them, or else is set to -1. Intuitively, the diagonal of the matrix
will have the values 0. This operation is performed iteratively
based on a sampling rate configuration value of the target
constellation, which is defined via the administration console.
The matrix is generated and saved in the internal buffer of
the daemon. The daemon then injects the matrix every time
it is generated into the character device of the Netfilter kernel
module extension, EarthDev.ko . The daemon also responds
with the matrix data and the locations data to other clients,
over web services protocol, such as the Cesium GUI simulator
and the administration console.

Fig. 4: Netfilter Block Diagram with EarthDev.ko Hook

Fig. 4 presents a block diagram for the internal
routing phases within the Linux kernel. The Netfilter
kernel module extension EarthDev.ko, installs a
hook in Network Layer-3, specifically in the
NF IP POST ROUTING after all routing operations
are performed, to intercept all packets received by earth for
routing. As per Fig. 3, the module extracts the source and the
destination addresses from the incoming packets and looks
them up in the line-of-sight matrix. The decision of allowing
the packets or blocking them is based on the existence of
both source and destination addresses in the matrix, and that
both have a distance value larger than 0. If either the source
or the destination addresses are not found in the line-of-sight
matrix, the packet is allowed.

Extensive locking and synchronization take place within
the kernel module to synchronize between copying data from
the userland daemon to the character device buffer, as well
as reading from the line-of-sight matrix for packet routing
decisions. It should be noted that timings within the kernel
is crucial as the whole process of looking up entries in the
line-of-sight matrix should be performed most efficiently.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1464International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



E. Framework Deployment

The simulation environment is scalable and cloud enabled,
which allows for flexible deployment. Fig. 5 presents the
deployment diagram of the simulator subsystems. The device
boxes presents the boundaries of a virtual machine or a
physical node. A device box can host different simulator
subsystems. All of the subsystems boxes can be deployed on
cloud IaaS virtual machines. The deployment diagram in Fig. 5
shows the affinity of certain components, meaning that all the
software modules that are deployed within the boundaries of
the same device box will need to be physically deployed within
the same virtual or physical environment; basically, deployed
within the same operating system boundaries.

Fig. 5: Framework Deployment Diagram

The SGP4 library is needed on all node types except the
database server, and it is essential to exist on the earth virtual
machine and the application server. SGP4 is optional for the
applications running on the satellites and the ground stations, if
position related data is required. The Netfilter hook extension
is deployed on the earth virtual machine for packet routing.
The Cesium javascript library and the front-end administrative
web application are deployed on the application server. It is
very important to highlight that the only operating system
constraint is that the earth VM needs to have a Linux OS to be
able to install the Netfilter hook extension. On the other hand,
all the constellation objects virtual machines need to have an
OS that can support the internet protocol. Hence, the simulator
can simulate the line-of-sight blockage effect for any satellite
application running on any operating system environment.

For performance scaling the MySQL server can be
replicated through a MySQL replication cluster for better
performance throughput and fault tolerance. The GUI
application server for Cesium simulation and the web
administration console can also be scaled in a cascaded manner
and deployed behind a dispatcher cluster.

VI. EXPERIMENTS AND RESULTS

To asses the simulation framework, the Netfilter Module
extension effect on the overall network transport performance

is measured. The Analysis of Variance (ANOVA) factorial
experiment design [15][14] was used to model and simulate
the execution of the earth virtual machine. Performance is
measured with respect to traffic initiated from satellites and
ground stations virtual machines. We used the R language [5]
to run the simulation and present the results.

ANOVA factorial experiment design is a statistical
modelling approach that can identify influential factors on
a specific process or system. In our experiment, we define
three factors to investigate their effect on network throughput.
The three factors are stream size, number of communicating
satellites, and the deployment of the line-of-sight matrix
together with the Netfilter kernel module extension.

The stream size is the size of the message being sent through
the earth gateway. The number of communicating satellites
represents the number of concurrent threads of communication
at any point in time. The Netfilter kernel module extension is
plugged into the kernel, and with the help of the line-of-sight
daemon the line-of-sight matrix is injected to the Netfilter
module extension.

A. Experiment Description

Our main objective is to measure the effect initiated by
searching the line-of-sight matrix on per packet transmission
between any two VMs through the earth gateway router.
As the number of communicating VMs gets bigger, two
overhead effects will be incurred. First, the number of
concurrent connections going through the earth virtual
machine will be larger, imposing communication overhead due
to the multiplexing of forwarding packets between different
concurrent streams. The second overhead results from the
larger search space presented by the large line-of-sight matrix,
which is a function of the number of communicating satellites
and ground stations.

A client application deployed on satellites and ground
stations virtual machines is used to generate results that is
used as the input to the ANOVA model. The application is a
simple network round trip calculator. The application is split
into two parts running in concurrent threads, client and server.
The client part is capable of sending a network message, built
up of a sequence of network packets, to any other application
running on other virtual machines.

The client can send concurrent messages, with a specific
size based on a configuration file. The server thread waits for
a connection, and upon receiving a connection it dispatches a
separate thread to serve it, allowing for serving concurrent
connections. The server thread’s job is to reply to its
corresponding client with the same message and close the
connection. The client verifies the received message and makes
sure that it is identical to the original one. The messages are
generated randomly as per each individual connection to make
sure of the validity of the message after the round trip travel.
The client records a time stamp before sending the packet and
upon receiving the reply, and then calculates the round trip
time for the sending of the packet back and forth. The time
and the rest of the request attributes are then saved to a log
file.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1465International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



Fig. 6: ANOVA Table and Graph Plots Before Normalization

In the experiment runs, 20 virtual machines are used to
represent the communicating satellites and ground stations. We
have performed two main experiment runs, which are identical
in everything except for the activation of the earth gateway
firewall where the line-of-sight matrix daemon is activated. In
the first run, the native Linux firewall router is configured on
the earth VM to allow forwarding network packets from any
source to any destination. While in the second experiment run
our kernel extension is loaded with the line-of-sight matrix,
to be able to measure the effect of the simulator extension on
the overall network transport performance. It is important to
mention here that for the sake of the experiment validity, we
have modified the line-of-sight userland daemon to generate a
matrix with all its cells set to 1, to allow all traffic between

all satellites. This modification will make sure that all packets
will arrive to their destinations, as the main objective here is
to measure the throughput, and not to test the validity of the
line-of-sight matrix generation.

Each experiment run is divided into 50 sub-runs. The
amount of traffic to be transferred in each sub-run is set to 500
MB, which was chosen to be large enough and to take a long
duration to absorb any network fluctuations or outliers, which
usually occur at the start of launching the communicating
threads. The message size in the first sub-run is set to 10 KB,
with 2 concurrent threads; which means that each client will
send a 10 KB message to 2 clients in parallel. The sending
client keeps all the recipient clients in a list, and loops through
them 2 by 2 until the list is exhausted. The client then will

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1466International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



Fig. 7: ANOVA Table and Graph Plots After Normalization

need to start over from the beginning of the list. In subsequent
runs the number of the concurrent threads is incremented by 2
until 20 concurrent threads is reached, which is the number of
communicating virtual machines in the constellation; this sums
up to 10 sub-runs. The 10 sub-runs are repeated after doubling
the message size. The message size is doubled until 200 KB,
which makes the total number of sub-runs per experiment is
50 sub-runs. The total number of connections per sub-run is
not fixed over all sub-runs, as they have to be calculated in a
way that the total size of data being transferred is 500 MB.

The maximum number of concurrent threads going through
the Netfilter kernel extension is 400 concurrent threads, and
the maximum concurrent sessions traffic volume is 78 MB.

The total number of log entries generated by the round trip
application in the two experiments is very close to 2 million
log entries. The data is stored in a MySQL database for further
processing and preparation before introducing it to ANOVA.
A log entry would typically have the following attributes:

1) Run Name: each sub-run is given a unique name to be
able to identify which sub-run a log entry belongs to.

2) Source Host Name: the network host name of the
virtual machine sending the messages.

3) Destination Host Name: the network host name of the
virtual machine receiving the message.

4) Message Size: The size of the message in bytes.
5) Threads: the number of concurrent threads initiated by

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1467International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



the client in parallel with this thread.
6) Time: the time in seconds for the whole packet round

trip transmission.

B. ANOVA Results and Interpretation

A factorial ANOVA model is run on the collected data,
and the ANOVA table and plots in Fig. 6 present the initial
results. One of the most important prerequisites for ANOVA to
generate correct results is that the experiment data introduced
to the model needs to be homogeneous and should be normally
distributed. A set of graphs are generated by the ANOVA
model to check the normality of the data, as well as its
homogeneity. Moreover, a number of tests can be performed
to numerically test the normality and the homogeneity.

As per the ANOVA table in Fig. 6, each factor in the
experiment is listed in a row. ANOVA is based on checking
the validity of a null hypothesis. The null hypothesis indicates
that all the factors have the same effect. The P-Value located
in the last column of the ANOVA table in Fig. 6 represents
the probability of the corresponding factor violating the null
hypothesis, which indicates weather the corresponding factor
is influential or not. The P-Value needs to be compared to
a threshold that is called α, and if the P-Value is less than
α then the corresponding factor is considered influential. A
default value for α = 0.05 is preselected, and can be changed
based on specific case requirements based on prior knowledge
of the problem nature.

Test P-Value (<0.05)
Bartlett 2.2e-16
Anderson-Darling 5.458e-10
Shapio-Wilk 1.472e-10

TABLE I: HOMOGENEITY AND NORMALITY TEST RESULTS

The ANOVA model need to be checked and the plots
need to be interpreted before analysing the ANOVA table.
Plot A and plot B in Fig. 6 illustrate the non-homogeneity
of the data, and this is very clear as data is not equally
distributed over the whole graph area. Plot C illustrates that
the data is not normally distributed, not showing a continuous
firm straight line. Finally, plot D helps identifying outliers
presented by far stand out data points, that might need further
investigation, which does not show in our case. Consequently,
we have applied the Bartlett test for homogeneity, and the
Anderson-Darling as well as the Shapro-Wilk normality tests.
The table in Fig. 8 presents the results of the tests which
emphasis the negative normality and the negative homogeneity
results we achieved from the graphs.

In this case, normality transformation of the data needs to
be applied to be able to trust the results generated. We have
applied the Box Cox transformation method on the data, and
we have ran the model again on the transformed data. The
ANOVA table and the 4 plots in Fig. 7 are the results of the
ANOVA model after the Box Cox transformation.

As can be seen from the plots after the transformation, plot
A and plot B show more data distribution over the graph
area, and plot C shows a more continuous firm straight line,

and hence normality and homogeneity are achieved after data
transformation. This paves the way to start interpreting the
ANOVA results, identify the influential factors, and determine
the influence ratios between factor.

Fig. 8: Factors Mean Squares Ratios

The influential factors can be identified from their P-Values
being less than α=0.05, which rejects the null hypothesis that
all factors have the same means, and hence the same ratio of
influence. Based on that criteria, and as can be seen from the
ANOVA table in Fig. 7, the influential factors are the stream
size, concurrent threads, and the existence of the earthdev
kernel module extension. Moreover, the ANOVA model can
detect the effect of the interaction of any set of factors,
and as we can see the interaction between the stream size
and the number of concurrent threads is influential. Also the
interaction of the three factors is influential as well. A very
important thing to mention here is that after the Box Cox
transformation of the data, the interaction between the earthdev
and the concurrent threads is eliminated as its P-Value raised
above 0.05, which emphasis the importance of the model
check we have applied.

Fig. 9: Regression Analysis

The ratios between the effect of different factors is presented
in the Pie chart of Fig. 9. As we can see, the largest effect
is attributed to the number of concurrent threads, followed by
the stream size, and the interaction between the stream size
and the number of concurrent threads. The deployment of the
earthdev extension module comes later with a very small effect

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1468International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



Fig. 10: 3D and 2D Factors Interactions

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1469International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



Fig. 11: Stream Size vs. Time Fig. 12: Threads vs. Speed

on the yield, which implies the very low overhead imposed by
the simulator kernel model extension.

The 3D and 2D interaction plots in Fig. 11 show the
interaction effect of different factors. It is very obvious from
the plots that the effect of the earthdev module extension is
very minimal, and that the change in performance is very much
attributed to both, the stream size and the number of concurrent
threads.

Based on the ANOVA model applied, we were able to
come up with a regression relationship between the different
factors. The regression table in Fig. 10 presents the coefficients
of each factor. The importance of this regression analysis is
basically the ability to predict an estimate of the yield for new
combinations of the studied factors that are not being covered
in the experiment; for example the case of 7 concurrent threads
and a message size of 15.7 KB.

To sum up, the ANOVA model has showed that our
simulator module extension is of a very low overhead and
that the delay in packets delivery attributed to the deployment
of the simulator kernel module extension is very minimal. The
two line graph plots in Fig. 12 and Fig. 13 show that the effect
on the packet transport speed imposed by the kernel module
extension is of a minimal effect.

VII. FUTURE WORK

Extensions and enhancements can be added to the proposed
simulation framework. Two main extensions are worth
mentioning, interconnected earth virtual machines, and traffic
shaping.

For scalability, if the number of constellation objects
gets bigger, the earth virtual machines can become a
communication bottleneck. In that case, more than one earth
virtual machine can exist, and the constellation objects can be
divided into groups, each can be assigned to an earth virtual
machine. The constellation objects belonging to the same
group will communicate through their earth virtual machine,
and the earth virtual machines will collaborate to transport
traffic across the groups. This will split the traffic of the

constellation, and will divide the flow of the communication
to be split over more than one gateway. In that case, a virtual
network connecting the earth VMs, and a virtual network
for each group of constellation objects need to be in place.
Consequently, the earth virtual machine will need to have two
virtual network cards to connect it to the two virtual networks.
We can visualize this as building a cluster of earth virtual
machines which appear to the outside world, the constellation
objects, as one entity, while it is built up of multiple virtual
machines. Better levels of scalability can be achieved that
way through adding more earth virtual machines as the target
constellation size gets larger. We can go further to make the
groups dynamic, meaning that constellation objects will leave
and join groups based on their relative location to each other.

Traffic shaping is a way to change the speed of the
communication medium between two communicating entities.
This can be of much benefit if implemented based on the
distance between the communicating constellation objects,
which will achieve a much realistic environment. The kind
of challenges that we are going to face here are related to
problems resulting from inducing delays within the Linux
kernel, as this might affect the internal state of the kernel, and
hence might result in unexpected results. This will impose an
extensive use of the Linux kernel work queue to overcome
delay related problems.

VIII. CONCLUSION

A scalable cloud-based simulation framework is proposed
for LEO constellations distributed software development.
The proposed simulator framework is capable of simulating
the line-of-sight earth blockage effect without updating the
software application deployed on the satellites and ground
stations of a target constellation. This will allow testing
LEO distributed software in the lab transparently; the
deployed LEO software is not aware that it is running in
a simulated environment. We have conducted an ANOVA
factorial experiment to investigate the performance effect on
the communication layer, and the simulator showed a very low

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1470International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f



overhead effect on the communication overall performance. As
this work represents the base and the core of the cloud-based
LEO simulator, we can build extra functionalities on top of
it, such as interconnected earth gateways and traffic shapers.
Finally, the proposed framework can be used as a test bed
for testing LEO applications from the communication point
of view before launching them to space.

REFERENCES

[1] Apache Website. http://www.apache.org/, 2013. (Online; accessed
15-August-2013).

[2] C++ SGP4 Satellite Library. http://www.danrw.com/sgp4/, 2013.
(Online; accessed 15-August-2013).

[3] Cesium WebGL Virtual Globe and Map Engine. http://cesium.agi.com/,
2013. (Online; accessed 15-August-2013).

[4] MySQL Website. http://www.mysql.com, 2013. (Online; accessed
15-August-2013).

[5] R Language Project for Statistical Computing. http://www.r-project.org/,
2013. (Online; accessed 20-September-2013).

[6] A. Agogino, C. HolmesParker, and K. Tumer. Evolving distributed
resource sharing for cubesat constellations. In Proceedings of
the fourteenth international conference on Genetic and evolutionary
computation conference, GECCO ’12, pages 1015–1022, New York, NY,
USA, 2012. ACM.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. Above the clouds: A berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University
of California, Berkeley, Feb 2009.

[8] H. Bedon, C. Negron, J. Llantoy, C. Nieto, and C. Asma. Preliminary
internetworking simulation of the qb50 cubesat constellation. In
Communications (LATINCOM), 2010 IEEE Latin-American Conference
on, pages 1–6, 2010.

[9] J. Canales, G. Rodriguez, J. Estela, and N. Krishnamurthy. Design of a
peruvian small satellite network. In Aerospace Conference, 2010 IEEE,
pages 1–8, 2010.

[10] O. Challa and J. McNair. Cubesat torrent: Torrent like distributed
communications for cubesat satellite clusters. In MILITARY
COMMUNICATIONS CONFERENCE, 2012 - MILCOM 2012, pages
1–6, 2012.

[11] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers, 3rd
Edition. O’Reilly Media, Inc., 2005.

[12] D. Hilley and D. Hilley. Cloud computing: A taxonomy of platform and
infrastructure-level offerings, April 2009.

[13] C. N. Hoefer and G. Karagiannis. Taxonomy of cloud computing
services. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages
1345–1350, 2010.

[14] R. Jain. The Art of Computer Systems Performance Analysis: techniques
for experimental design, measurement, simulation, and modeling. Wiley,
1991.

[15] D. C. Montgomery. Design and Analysis of Experiments. John Wiley
& Sons, 2006.

[16] P. Muri and J. McNair. A survey of communication sub-systems
for intersatellite linked systems and cubesat missions. Journal of
Communications, 7(4), 2012.

[17] J. M. NELSON. Persistent Military Satellite Communications Coverage
Using A CubeSat Constellation In Low Earth Orbit. PhD thesis,
University of Central Florida Orlando, Florida, 2010.

[18] B. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud
computing systems. In INC, IMS and IDC, 2009. NCM ’09. Fifth
International Joint Conference on, pages 44–51, 2009.

[19] G. B. Shaw. The generalized information network analysis methodology
for distributed satellite systems. Technical report, Doctor of Science
Thesis, MIT, 1998.

[20] B. R. Smalarz. Cubesat constellation analysis for data relaying. 2011.
[21] J. E. Underwood. Distributed satellite communication system design:

First-order interactions between system and network architectures.
Master’s thesis, Massachusetts Institute of Technology Department of
Aeronautics and Astronautics, Cambridge, Massachusetts, June 2005.

[22] D. A. Vallado and P. Crawford. Sgp4 orbit determination. In Proceedings
of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pages
18–21, 2008.

[23] B. Venkatamohan. Automated implementation of stateful firewalls in
linux. 2011.

[24] J. Wertz and W. Larson. Space Mission Analysis and Design. Space
Technology Library. Springer Netherlands, 1999.

[25] L. Wood, W. D. Ivancic, W. M. Eddy, D. Stewart, J. Northam, and
C. Jackson. Investigating operation of the internet in orbit: Five years
of collaboration around cleo. CoRR, abs/1204.3261, 2012.

Karim Sobh is a PhD. candidate in Computer
Science at the American University in Cairo. He
has achieved his bachelor and masters degree in
Computer Science from the same institute. Sobh’s
specialization is in distributed systems and cloud
computing, and his PhD. topic is cloud environments
metering.

Dr. Khaled El-Ayat received his Ph.D in EE/CS
from UCSB in 1977, M.A. sc. From U of T and
B.Sc. from Cairo University. As a Project Manager
at Intel Corp for 10 years he developed Intels
first 32-bit microprocessor [80386], on display at
the Smithonian Institute, Washington D.C. with
Dr. El-Ayat’s initials engraved on the chip. He
is a Founder of Actel Corporation where he
developed the first antifuse FPGA. Actel’s customers
have landed 60 Actel FPGAs on Mars using this
technology. He is currently a Professor at the CSE

Department, American University Cairo. His research interests are BCI,
Embedded Systems and Computer Architecture. Dr. El-Ayat has over 40 US
patents.

Dr. Fady Morcos is an Assistant Professor in
the School of Science & Engineering at the
American University in Cairo. He received his
Ph.D. in Astrodynamics from The University of
Texas at Austin, and M.Sc and B.Sc. in Aerospace
Engineering from the University of Southern
California. His current research interests lie in
the area of orbital mechanics, trajectory design
and optimization, satellite technology and satellite
mission design. Dr. Morcos is a recipient of the
NASA Space Act Award, for Creative and Innovative

Development, and the NASA Exceptional Software Award, for designing key
flight planning algorithms for NASA Johnson Space Center.

Dr. Amr El-Kadi is Professor and former Chair, the
Computer Science and Engineering Department at
the American University in Cairo. He was a member
of the IEEE-CS/ACM Joint Task Force on Software
Engineering Ethics and Professional Practices
(SEEPP) that developed the Software Engineering
Code of Ethics and Professional Practices. Before
joining AUC he was a consulting engineer with the
Information, Technology and Facilities Department
at the World Bank, Washington DC. He received his
D.Sc. degree in Electrical Engineering and Computer

Science from The George Washington University. Dr. El-Kadi is a Senior
Member of IEEE (serving as the Middle East Representative of the IEEE
Technical Committee on Operating Systems and Applications Environments),
a member of ACM, and a member of Eta Kappa Nu (the US National
Electrical and Computer Engineering Honor Society).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:6, 2015 

1471International Scholarly and Scientific Research & Innovation 9(6) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

6,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

72
4.

pd
f


