Search results for: physical training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2315

Search results for: physical training

995 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model

Authors: Malin Isaksson

Abstract:

Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.

Keywords: Shared practice, flipped classroom, literature in foreign language studies, teaching literature analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
994 Perceived Constraints on Sport Participation among Young Koreans in Australia

Authors: Jae Won Kang

Abstract:

The purpose of this study was to examine a broader range of sport constraints perceived by young Koreans in Australia who may need to adjust to changing behavioral expectations due to the socio-cultural transitions. Regardless of gender, in terms of quantitative findings, the most important participation constraints within the seven categories were resources, access, interpersonal, affective, religious, socio-cultural, and physical in that order. The most important constraining items were a lack of time, access, information, adaptive skills, and parental and family support in that order. Qualitative research found young Korean’s participation constraints among three categories (time, parental control and interpersonal constraints). It is possible that different ethnic groups would be constrained by different factors; however, this is outside the scope of this study.

Keywords: Constraints, cultural adjustment, Sport, Young Koreans in Australia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
993 Preparation and Characterization of Organic Silver Precursors for Conductive Ink

Authors: Wendong Yang, Changhai Wang, Valeria Arrighi

Abstract:

Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 °C.

Keywords: Conductive ink, electrical property, film, organic silver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
992 Modeling the Vapor Pressure of Biodiesel Fuels

Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno

Abstract:

The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.

Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6012
991 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
990 Nanosize Structure Phase States in the Titanium Surface Layers after Electroexplosive Carburizing and Subsequent Electron Beam Treatment

Authors: Victor E. Gromov, Evgenii A. Budovskikh, Ludmila P. Bashchenko, Yurii F. Ivanov, Anna V. Ionina, Nina A. Soskova, Guoyi Tang

Abstract:

The peculiarities of the nanoscale structure-phase states formed after electroexplosive carburizing and subsequent electron-beam treatment of technically pure titanium surface in different regimes are established by methods of transmission electron diffraction microscopy and physical mechanisms are discussed. Electroexplosive carburizing leads to surface layer formation (40 m thickness) with increased (in 3.5 times) microhardness. It consists of β-titanium, graphite (monocrystals 100-150 nm, polycrystals 5-10 nm, amorphous particles 3-5nm), TiC (5-10 nm), β-Ti02 (2-20nm). After electron-beam treatment additionally increasing the microhardness the surface layer consists of TiC.

Keywords: nanoscale, phase, structure, titanium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
989 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: Analysis, estimated model, parameter identification, Swelling of clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
988 Design and Economical Performance of Gray Water Treatment Plant in Rural Region

Authors: Bhausaheb L. Pangarkar, Saroj B. Parjane, M.G. Sane

Abstract:

In India, the quarrel between the budding human populace and the planet-s unchanging supply of freshwater and falling water tables has strained attention the reuse of gray water as an alternative water resource in rural development. This paper present the finest design of laboratory scale gray water treatment plant, which is a combination of natural and physical operations such as primary settling with cascaded water flow, aeration, agitation and filtration, hence called as hybrid treatment process. The economical performance of the plant for treatment of bathrooms, basins and laundries gray water showed in terms of deduction competency of water pollutants such as COD (83%), TDS (70%), TSS (83%), total hardness (50%), oil and grease (97%), anions (46%) and cations (49%). Hence, this technology could be a good alternative to treat gray water in residential rural area.

Keywords: Gray water treatment plant, gray water, naturaltechnology, pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4145
987 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, Triazoles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
986 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression

Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah

Abstract:

An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.

Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
985 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
984 Optimization of Lakes Aeration Process

Authors: Mohamed Abdelwahed

Abstract:

The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approach

Keywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
983 Research on Maintenance Design Method based Virtual Maintenance

Authors: Yunbin Yang, Liangli He, Fengjun Wang

Abstract:

The essentiality of maintenance assessment and maintenance optimization in design stage is analyzed, and the existent problems of conventional maintenance design method are illuminated. MDMVM (Maintenance Design Method based Virtual Maintenance) is illuminated, and the process of MDMVM established, and the MDMVM architecture is given out. The key techniques of MDMVM are analyzed, and include maintenance design based KBE (Knowledge Based Engineering) and virtual maintenance based physically attribute. According to physical property, physically based modeling, visual object movement control, the simulation of operation force and maintenance sequence planning method are emphatically illuminated. Maintenance design system based virtual maintenance is established in foundation of maintenance design method.

Keywords: Digital mock-up, virtual maintenance, knowledge engineering, maintenance sequence planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
982 Performance Enhancement of Cellular OFDM Based Wireless LANs by Exploiting Spatial Diversity Techniques

Authors: S. Ali. Tajer, Babak H. Khalaj

Abstract:

This paper represents an investigation on how exploiting multiple transmit antennas by OFDM based wireless LAN subscribers can mitigate physical layer error rate. Then by comparing the Wireless LANs that utilize spatial diversity techniques with the conventional ones it will reveal how PHY and TCP throughputs behaviors are ameliorated. In the next step it will assess the same issues based on a cellular context operation which is mainly introduced as an innovated solution that beside a multi cell operation scenario benefits spatio-temporal signaling schemes as well. Presented simulations will shed light on the improved performance of the wide range and high quality wireless LAN services provided by the proposed approach.

Keywords: Multiple Input Multiple Output (MIMO), Orthogonal Frequency Division Multiplexing (OFDM), and WirelessLocal Area Network (WLAN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
981 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
980 The Patterns of Unemployment and the Geography of Social Housing

Authors: Sónia Alves

Abstract:

During the last few decades in the academic field, the debate has increased on the effects of social geography on the opportunities of socioeconomic integration. On one hand, it has been discussed how the contents of the urban structure and social geography affect not only the way people interact, but also their chances of social and economic integration. On the other hand, it has also been discussed how the urban structure is also constrained and transformed by the action of social actors. Without questioning the powerful influence of structural factors, related to the logic of the production system, labor markets, education and training, the research has shown the role played by place of residence in shaping individual outcomes such as unemployment. In the context of this debate the importance of territory of residence with respect to the problem of unemployment has been highlighted. Although statistics of unemployment have already demonstrated the unequal incidence of the phenomenon in social groups, the issue of uneven territorial impact on the phenomenon at intra-urban level remains relatively unknown. The purpose of this article is to show and to interpret the spatial patterns of unemployment in the city of Porto using GIS (Geographic Information System - GIS) technology. Under this analysis the overlap of the spatial patterns of unemployment with the spatial distribution of social housing, allows the discussion of the relationship that occurs between these patterns and the reasons that might explain the relative immutability of socioeconomic problems in some neighborhoods.

Keywords: Unemployment, area effects, urban planning, Porto.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
979 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
978 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
977 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
976 Investigating Sustainable Neighborhood Development in Jahanshahr

Authors: Khashayar Kashani Jou, Ilnaz Fathololoomi

Abstract:

Nowadays, access to sustainable development in cities is assumed as one of the most important goals of urban managers. In the meanwhile, neighborhood as the smallest unit of urban spatial organization has a substantial effect on urban sustainability. Hence, attention to and focus on this subject is highly important in urban development plans. The objective of this study is evaluation of the status of Jahanshahr Neighborhood in Karaj city based on sustainable neighborhood development indicators. This research has been applied based on documentary method and field surveys. Also, evaluating of Jahanshahr Neighborhood of Karaj shows that it has a high level in sustainability in physical and economical dimension while a low level in cultural and social dimension. For this purpose, this neighborhood as a semi-sustainable neighborhood must take measures for development of collective spaces and efficiency of utilizing the public neighborhood spaces via collaboration of citizens and officials.

Keywords: Neighborhood, Sustainable Development, Sustainable Neighborhood Development, Jahanshahr Neighborhood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
975 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
974 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
973 Perceptions of Health Risks amongst Tertiary Education Students in Mauritius

Authors: Smita S. D. Goorah, Dilish Jokhoo

Abstract:

A personal estimate of a health risk may not correspond to a scientific assessment of the health risk. Hence, there is a need to investigate perceived health risks in the public. In this study, a young, educated and healthy group of people from a tertiary institute were questioned about their health concerns. Ethics clearance was obtained and data was collected by means of a questionnaire. 362 students participated in the study. Tobacco use, heavy alcohol drinking, illicit drugs, unsafe sex and potential carcinogens were perceived to be the five greatest threats to health in this cohort. On the other hand natural health products, unemployment, unmet contraceptive needs, family violence and homelessness were felt to be the least perceived health risks. Nutrition-related health risks as well as health risks due to physical inactivity and obesity were not perceived as major health threats. Such a study of health perceptions may guide health promotion campaigns.

Keywords: Health promotion, perceptions of health risks, university students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
972 Why Do Pakistani Customers Patronize Islamic Banks- An Empirical Analysis

Authors: Farjana Mumu, Jia Guozho

Abstract:

Throughout the world, the Islamic way of banking and financing is increasing. The same trend is also visible in Pakistan, where the Islamic banking sector is increasing in size and volume each year. The question immediately arises as why the Pakistanis patronize the Islamic banking system? This study was carried out to find whether following the Islamic rules in finance is the main factor for such selection or whether other factors such as customer service, location, banking hour, physical facilities of the bank etc also have importance. The study was carried by distributing questionnaire and 200 responses were collected from the clients of Islamic banks. The result showed that the service quality and other factors are as important as following the Islamic rules for finance to retain old ustomers and catch new customers. The result is important and Islamic banks can take actions accordingly to look after both the factors

Keywords: Customers' perception, customer satisfaction, customer service, Islamic banking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
971 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
970 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri

Abstract:

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
969 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation

Authors: Aymen Laadhari, Gábor Székely

Abstract:

In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.

Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
968 Asset Management for Educational Buildings in Egypt

Authors: M. Abdelhamid, I. Beshara, M. Ghoneim

Abstract:

In Egypt, the concept of Asset Management (AM) is new; however, the need for applying it has become crucial because deteriorating or losing an asset is unaffordable in a developing country like Egypt. Therefore the current study focuses on educational buildings as one of the most important assets regarding planning, building, operating and maintenance expenditures. The main objective of this study is to develop a SAMF for educational buildings in Egypt. The General Authority for Educational Buildings (GAEB) was chosen as a case study of the current research as it represents the biggest governmental organization responsible for planning, operating and maintaining schools in Egypt. To achieve the research objective, structured interviews were conducted with senior managers of GAEB using a pre designed questionnaire to explore the current practice of AM. Gab analysis technique was applied against best practices compounded from a vast literature review to identify gaps between current practices and the desired one. The previous steps mainly revealed; limited knowledge about strategic asset management, no clear goals, no training, no real risk plan and lack of data, technical and financial resources. Based on the findings, a SAMF for GAEB was introduced and Framework implementation steps and assessment techniques were explained in detail.

Keywords: Strategic Asset Management, Educational Building, Framework, Gab Analysis, Developing Country.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
967 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. It is a complex process that depends on heat and water transfer. The coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled Thermal-Hydraulic-Mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: Frost heave, numerical simulations, COMSOL software, unsaturated freezing soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291
966 Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)

Authors: Supatchalee Sirichokworrakit

Abstract:

Fishbone of Nile Tilapia (Tilapia nilotica), waste from the frozen Nile Tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of Tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p£0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p£0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score.

Keywords: Tilapia bone flour, Noodles, Cooking quality, Calcium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4088