Search results for: ordered fuzzy point
1382 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15891381 A Microcontroller Implementation of Constrained Model Predictive Control
Authors: Amira Kheriji Abbes, Faouzi Bouani, Mekki Ksouri
Abstract:
Model Predictive Control (MPC) is an established control technique in a wide range of process industries. The reason for this success is its ability to handle multivariable systems and systems having input, output or state constraints. Neverthless comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprisers as well as a transformer of organizations and markets. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In this paper, we propose an efficient firmware for the implementation of constrained MPC in the performed STM32 microcontroller using interior point method. Indeed, performances study shows good execution speed and low computational burden. These results encourage to develop predictive control algorithms to be programmed in industrial standard processes. The PID anti windup controller was also implemented in the STM32 in order to make a performance comparison with the MPC. The main features of the proposed constrained MPC framework are illustrated through two examples.Keywords: Embedded software, microcontroller, constrainedModel Predictive Control, interior point method, PID antiwindup, Keil tool, C/Cµ language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27961380 Risk Management through Controlling in Industrial Enterprises Operating in Slovakia
Authors: Mária Hudáková, Mária Lusková
Abstract:
This report is focused on widening the theoretical knowledge as well as controlling practical application from the risk management point of view, regarding to dynamic business changes that have occurred in Slovakia which recently has been considered to be an environment full of risk and uncertainty. The idea of the report is the proposal of the controlling operation model in the course of risk management process in an enterprise operating in Slovakia, by which the controller is able to identify early risk factors in suggested major areas of the business management upon appropriate business information integration, consecutive control and prognoses and to prepare in time full-value documents in order to suggest measures for reduction thereof. Dealing with risk factors, that can quickly limit the growth potential of the enterprise, is an essential part of managerial activities on each level. This is the reason why mutual unofficial, ergo collegial cooperation of individual departments is necessary for controlling application from the business risk management point of view. An important part of the report is elaborated survey of the most important risk factors existing in major management areas of enterprises operating in Slovakia. The outcome of the performed survey is a catalogue of the most important enterprise risk factors. The catalogue serves for better understanding risk factors affecting the Slovak enterprises, their importance and evaluation.Keywords: Controlling, information system, risks management, risk factor, crisis of enterprise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8901379 Comparison of FAHP and TOPSIS for Evacuation Capability Assessment of High-rise Buildings
Authors: Peng Mei, Yan-Jun Qi, Yu Cui, Song Lu, He-Ping Zhang
Abstract:
A lot of computer-based methods have been developed to assess the evacuation capability (EC) of high-rise buildings. Because softwares are time-consuming and not proper for on scene applications, we adopted two methods, fuzzy analytic hierarchy process (FAHP) and technique for order preference by similarity to an ideal solution (TOPSIS), for EC assessment of a high-rise building in Jinan. The EC scores obtained with the two methods and the evacuation time acquired with Pathfinder 2009 for floors 47-60 of the building were compared with each other. The results show that FAHP performs better than TOPSIS for EC assessment of high-rise buildings, especially in the aspect of dealing with the effect of occupant type and distance to exit on EC, tackling complex problem with multi-level structure of criteria, and requiring less amount of computation. However, both FAHP and TOPSIS failed to appropriately handle the situation where the exit width changes while occupants are few.Keywords: Evacuation capability assessment, FAHP, high-rise buildings, TOPSIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16191378 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking
Authors: Shiuh-Jer Huang, Yu-Sheng Hsu
Abstract:
On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14621377 Note on the Necessity of the Patch Test
Authors: Rado Flajs, Miran Saje
Abstract:
We present a simple nonconforming approximation of the linear two–point boundary value problem which violates patch test requirements. Nevertheless the solutions, obtained from these type of approximations, converge to the exact solution.
Keywords: Generalized patch test, Irons' patch test, nonconforming finite element, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15481376 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase
Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi
Abstract:
Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.Keywords: Environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29591375 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.
Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30411374 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.
Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9171373 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10941372 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan
Authors: Jieh-Haur Chen, Pei-Fen Huang
Abstract:
This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16821371 Optimized Facial Features-based Age Classification
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park
Abstract:
The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461370 Active Vibration Control of Passenger Seat with HFPIDCR Controlled Suspension Alternatives
Authors: Devdutt, M. L. Aggarwal
Abstract:
In this paper, passenger ride comfort issues are studied taking active quarter car model with three degrees of freedom. A hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is designed for vibration control of passenger seat. Three different control strategies are considered. In first case, main suspension is controlled. In second case, passenger seat suspension is controlled. In third case, both main suspension and passenger seat suspensions are controlled. Passenger seat acceleration and displacement results are obtained using bump and sinusoidal type road disturbances. Finally, obtained simulation results of designed uncontrolled and controlled quarter car models are compared and discussed to select best control strategy for achieving high level of passenger ride comfort.
Keywords: Active suspension system, HFPIDCR controller, passenger ride comfort, quarter car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12971369 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study
Authors: M. Kosacka, I. Kudelska
Abstract:
Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.Keywords: Dismantling, end of life vehicle, sustainability, storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13651368 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M.L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash Floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.
Keywords: Decision Support System, Early Warning Systems, Flash Flood, Natural Hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25011367 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao
Abstract:
In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17281366 Design and Development of iLON Smart Server Based Remote Monitoring System for Induction Motors
Authors: G. S. Ayyappan, M. Raja Raghavan, R. Poonthalir, Kota Srinivas, B. Ramesh Babu
Abstract:
Electrical energy demand in the World and particularly in India, is increasing drastically more than its production over a period of time. In order to reduce the demand-supply gap, conserving energy becomes mandatory. Induction motors are the main driving force in the industries and contributes to about half of the total plant energy consumption. By effective monitoring and control of induction motors, huge electricity can be saved. This paper deals about the design and development of such a system, which employs iLON Smart Server and motor performance monitoring nodes. These nodes will monitor the performance of induction motors on-line, on-site and in-situ in the industries. The node monitors the performance of motors by simply measuring the electrical power input and motor shaft speed; coupled to genetic algorithm to estimate motor efficiency. The nodes are connected to the iLON Server through RS485 network. The web server collects the motor performance data from nodes, displays online, logs periodically, analyzes, alerts, and generates reports. The system could be effectively used to operate the motor around its Best Operating Point (BOP) as well as to perform the Life Cycle Assessment of Induction motors used in the industries in continuous operation.
Keywords: Best operating point, iLON smart server, motor asset management, LONWORKS, Modbus RTU, motor performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7181365 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.
Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891364 Service Quality and Consumer Behavior on Metered Taxi Services
Authors: Nattapong Techarattanased
Abstract:
The purposes of this research are to make comparisons in respect of the behaviors on the use of the services of metered taxi classified by the demographic factor and to study the influence of the recognition on service quality having the effect on usage behaviors of metered taxi services of consumers in Bangkok Metropolitan Areas. The samples used in this research were 400 metered taxi service users in Bangkok Metropolitan Areas and questionnaire was used as the tool for collecting the data. Analysis statistics are mean and multiple regression analysis. Results of the research revealed that the consumers recognize the overall quality of services in each aspect include tangible aspects of the service, responses to customers, assurance on the confidence, understanding and knowing of customers which is rated at the moderate level except the aspect of the assurance on the confidence and trustworthiness which are rated at a high level. For the result of hypothetical test, it is found that the quality in providing the services on the aspect of the assurance given to the customers has the effect on the usage behaviors of metered taxi services and the aspect of the frequency on the use of the services per month which in this connection. Such variable can forecast at one point nine percent (1.9%). In addition, quality in providing the services and the aspect of the responses to customers have the effect on the behaviors on the use of metered taxi services on the aspect of the expenses on the use of services per month which in this connection, such variable can forecast at two point one percent (2.1%).Keywords: Consumer behavior, metered taxi, satisfaction, service quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35511363 Recurrent Radial Basis Function Network for Failure Time Series Prediction
Authors: Ryad Zemouri, Paul Ciprian Patic
Abstract:
An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171362 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches
Authors: Fereydoon Sarmadian, Ali Keshavarzi
Abstract:
Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.
Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181361 Estimation of Individual Power of Noise Sources Operating Simultaneously
Authors: Pankaj Chandna, Surinder Deswal, Arunesh Chandra, SK Sharma
Abstract:
Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.Keywords: Industrial noise, sound power level, multiple noise sources, sources contribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18491360 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber
Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner
Abstract:
In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.
Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9651359 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network
Authors: K. Atashgar
Abstract:
When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.
Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16791358 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images
Authors: K.Mala, V.Sadasivam, S.Alagappan
Abstract:
Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.
Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29871357 Effect of Neighborhood Size on Negative Weights in Punctual Kriging Based Image Restoration
Authors: Asmatullah Chaudhry, Anwar M. Mirza
Abstract:
We present a general comparison of punctual kriging based image restoration for different neighbourhood sizes. The formulation of the technique under consideration is based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Three different neighbourhood windows are considered to estimate the semivariance at different lags for studying its effect in reduction of negative weights resulted in punctual kriging, consequently restoration of degraded images. Our results show that effect of neighbourhood size higher than 5x5 on reduction in negative weights is insignificant. In addition, image quality measures, such as structure similarity indices, peak signal to noise ratios and the new variogram based quality measures; show that 3x3 window size gives better performance as compared with larger window sizes.
Keywords: Image restoration, punctual kriging, semi-variance, structure similarity index, negative weights in punctual kriging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23541356 Lower energy Gait Pattern Generation in 5-Link Biped Robot Using Image Processing
Authors: Byounghyun Kim, Youngjoon Han, Hernsoo Hahn
Abstract:
The purpose of this study is to find natural gait of biped robot such as human being by analyzing the COG (Center Of Gravity) trajectory of human being's gait. It is discovered that human beings gait naturally maintain the stability and use the minimum energy. This paper intends to find the natural gait pattern of biped robot using the minimum energy as well as maintaining the stability by analyzing the human's gait pattern that is measured from gait image on the sagittal plane and COG trajectory on the frontal plane. It is not possible to apply the torques of human's articulation to those of biped robot's because they have different degrees of freedom. Nonetheless, human and 5-link biped robots are similar in kinematics. For this, we generate gait pattern of the 5-link biped robot by using the GA algorithm of adaptation gait pattern which utilize the human's ZMP (Zero Moment Point) and torque of all articulation that are measured from human's gait pattern. The algorithm proposed creates biped robot's fluent gait pattern as that of human being's and to minimize energy consumption because the gait pattern of the 5-link biped robot model is modeled after consideration about the torque of human's each articulation on the sagittal plane and ZMP trajectory on the frontal plane. This paper demonstrate that the algorithm proposed is superior by evaluating 2 kinds of the 5-link biped robot applied to each gait patterns generated both in the general way using inverse kinematics and in the special way in which by considering visuality and efficiency.Keywords: 5-link biped robot, gait pattern, COG (Center OfGravity), ZMP (Zero Moment Point).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921355 Agent Decision using Granular Computing in Traffic System
Authors: Yasser F. Hassan, Marwa Abdeen, Mustafa Fahmy
Abstract:
In recent years multi-agent systems have emerged as one of the interesting architectures facilitating distributed collaboration and distributed problem solving. Each node (agent) of the network might pursue its own agenda, exploit its environment, develop its own problem solving strategy and establish required communication strategies. Within each node of the network, one could encounter a diversity of problem-solving approaches. Quite commonly the agents can realize their processing at the level of information granules that is the most suitable from their local points of view. Information granules can come at various levels of granularity. Each agent could exploit a certain formalism of information granulation engaging a machinery of fuzzy sets, interval analysis, rough sets, just to name a few dominant technologies of granular computing. Having this in mind, arises a fundamental issue of forming effective interaction linkages between the agents so that they fully broadcast their findings and benefit from interacting with others.
Keywords: Granular computing, rough sets, agents, traffic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17261354 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12921353 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture
Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani
Abstract:
The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated. Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.
Keywords: Carbon capture and storage, oxy-combustion, netpower cycle, oxyturbine power cycles, heat exchanger design, supercritical carbon dioxide, pinch point analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687