Search results for: Gaussian process classification model with multiclass
10931 Profit and Nonprofit Sports Clubs: Financial and Organizational Comparison in Poland
Authors: Wojciech B. Cieśliński, Igor Perechuda
Abstract:
The paper identifies the features of Polish sports clubs in the particular organizational forms: profit and nonprofit. Identification and description of these features is carried out in terms of financial efficiency of the given organizational form. Under the terms of the efficiency the research allows you to specify the advantages of particular organizational sports club form and the following limitations. Paper considers features of sports clubs in range of Polish conditions as legal regulations. The sources of the functioning efficiency of sports clubs may lie in the organizational forms in which they operate. Each of the available forms can be considered either a for-profit or nonprofit enterprise. Depending on this classification there are different capabilities of increasing organizational and financial efficiency of a given sports club. Authors start with general classification and difference between for-profit and non-profit sport clubs. Next identifies specific financial and organizational conditions of both organizational form and then show examples of mixed activity forms and their efficiency effect.Keywords: Financial efficiency, for-profit, non-profit, sports club.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203910930 A Comparison of Grey Model and Fuzzy Predictive Model for Time Series
Authors: A. I. Dounis, P. Tiropanis, D. Tseles, G. Nikolaou, G. P. Syrcos
Abstract:
The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.Keywords: Fuzzy predictive model, grey model, local andglobal prediction, meteorological forecasting, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215610929 EHW from Consumer Point of View: Consumer-Triggered Evolution
Authors: Yerbol Sapargaliyev, Tatiana Kalganova
Abstract:
Evolvable Hardware (EHW) has been regarded as adaptive system acquired by wide application market. Consumer market of any good requires diversity to satisfy consumers- preferences. Adaptation of EHW is a key technology that could provide individual approach to every particular user. This situation raises a question: how to set target for evolutionary algorithm? The existing techniques do not allow consumer to influence evolutionary process. Only designer at the moment is capable to influence the evolution. The proposed consumer-triggered evolution overcomes this problem by introducing new features to EHW that help adaptive system to obtain targets during consumer stage. Classification of EHW is given according to responsiveness, imitation of human behavior and target circuit response. Home intelligent water heating system is considered as an example.
Keywords: Actuators, consumer-triggered evolution, evolvable hardware, sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148610928 An Insurer’s Investment Model with Reinsurance Strategy under the Modified Constant Elasticity of Variance Process
Authors: K. N. C. Njoku, Chinwendu Best Eleje, Christian Chukwuemeka Nwandu
Abstract:
One of the problems facing most insurance companies is how best the burden of paying claims to its policy holders can be managed whenever need arises. Hence there is need for the insurer to buy a reinsurance contract in order to reduce risk which will enable the insurer to share the financial burden with the reinsurer. In this paper, the insurer’s and reinsurer’s strategy is investigated under the modified constant elasticity of variance (M-CEV) process and proportional administrative charges. The insurer considered investment in one risky asset and one risk free asset where the risky asset is modeled based on the M-CEV process which is an extension of constant elasticity of variance (CEV) process. Next, a nonlinear partial differential equation in the form of Hamilton Jacobi Bellman equation is obtained by dynamic programming approach. Using power transformation technique and variable change, the explicit solutions of the optimal investment strategy and optimal reinsurance strategy are obtained. Finally, some numerical simulations of some sensitive parameters were obtained and discussed in details where we observed that the modification factor only affects the optimal investment strategy and not the reinsurance strategy for an insurer with exponential utility function.
Keywords: Reinsurance strategy, Hamilton Jacobi Bellman equation, power transformation, M-CEV process, exponential utility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33210927 A World Map of Seabed Sediment Based on 50 Years of Knowledge
Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès
Abstract:
Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.
Keywords: Marine sedimentology, seabed map, sediment classification, World Ocean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103910926 Real-Time Specific Weed Recognition System Using Histogram Analysis
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Analysis of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image Processing, real-time recognition, Weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177310925 Towards Incorporating Context Awareness into Business Process Management
Authors: Xiaohui Zhao, Shahan Mafuz
Abstract:
Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviours, object movements, etc. Further, with such capability system applications can be smart to intelligently adapt their responses to the changing conditions. In regard to business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realising such context-aware business process management, this paper firstly explores its potential benefit, and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed in regard to context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.Keywords: Business process adaptation, business process evolution, business process modelling, and context awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197210924 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.
Keywords: Condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58710923 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.
Keywords: Classification, machine learning, time representation, stock prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115510922 Establishment of Air Quality Zones in Italy
Authors: M. G. Dirodi, G. Gugliotta, C. Leonardi
Abstract:
Member States shall establish zones and agglomerations throughout their territory to assess and manage air quality in order to comply with European directives. In Italy decree 155/2010, transposing Directive 2008/50/EC on ambient air quality and cleaner air for Europe, merged into a single act the previous provisions on ambient air quality assessment and management, including those resulting from the implementation of Directive 2004/107/EC relating to arsenic, cadmium, nickel, mercury and polycyclic aromatic hydrocarbons in ambient air. Decree 155/2010 introduced stricter rules for identifying zones on the basis of the characteristics of the territory in spite of considering pollution levels, as it was in the past. The implementation of such new criteria has reduced the great variability of the previous zoning, leading to a significant reduction of the total number of zones and to a complete and uniform ambient air quality assessment and management throughout the Country. The present document is related to the new zones definition in Italy according to Decree 155/2010. In particular the paper contains the description and the analysis of the outcome of zoning and classification.
Keywords: Zones, agglomerations, air quality assessment, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212910921 Developing Learning in Organizations with Innovation Pedagogy Methods
Authors: T. Konst
Abstract:
Most jobs include training and communication tasks, but often the people in these jobs lack pedagogical competences to plan, implement and assess learning. This paper aims to discuss how a learning approach called innovation pedagogy developed in higher education can be utilized for learning development in various organizations. The methods presented how to implement innovation pedagogy such as process consultation and train the trainer model can provide added value to develop pedagogical knowhow in organizations and thus support their internal learning and development.
Keywords: Innovation pedagogy, learning, organizational development, process consultation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125610920 Building a Service-Centric Business Model in SMEs in the Business-to-Business Context
Authors: Päivi J. Tossavainen , Leena Alakoski, Katri Ojasalo
Abstract:
Building a service-centric business model requires new knowledge and capabilities in companies. This paper enlightens the challenges small and medium sized firms (SMEs) face when developing their service-centric business models. This paper examines the premise for knowledge transfer and capability development required. The objective of this paper is to increase knowledge about SME-s transformation to service-centric business models.This paper reports an action research based case study. The paper provides empirical evidence from three case companies. The empirical data was collected through multiple methods. The findings of the paper are: First, the developed model to analyze the current state in companies. Second, the process of building the service – centric business models. Third, the selection of suitable service development methods. The lack of a holistic understanding on service logic suggests that SMEs need practical and easy to use methods to improve their businessKeywords: service-centric business model, service development, action research, case study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178110919 A Neural Model of Object Naming
Authors: Alessio Plebe
Abstract:
One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.
Keywords: Auditory cortex, object recognition, self-organizingmaps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138510918 A Frequency Dependence of the Phase Field Model in Laminar Boundary Layer with Periodic Perturbations
Authors: Yasuo Obikane
Abstract:
The frequency dependence of the phase field model(PFM) is studied. A simple PFM is proposed, and is tested in a laminar boundary layer. The Blasius-s laminar boundary layer solution on a flat plate is used for the flow pattern, and several frequencies are imposed on the PFM, and the decay times of the interfaces are obtained. The computations were conducted for three cases: 1) no-flow, and 2) a half ball on the laminar boundary layer, 3) a line of mass sources in the laminar boundary layer. The computations show the decay time becomes shorter as the frequency goes larger, and also show that it is sensitive to both background disturbances and surface tension parameters. It is concluded that the proposed simple PFM can describe the properties of decay process, and could give the fundamentals for the decay of the interface in turbulent flows.Keywords: Phase field model, two phase flows, Laminarboundary Layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150910917 Regional Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)
Authors: C. Ardil
Abstract:
The paper presents a multiple criteria decision making analysis process to determine the most suitable regional aircraft type according to a set of evaluation criteria. The main purpose of this study is to use different decision making methods to determine the most suitable regional aircraft for aviation operators. In this context, the nine regional aircraft types were analyzed using multiple criteria decision making analysis methods. Preference analysis for reference ideal solution (PARIS) was used in regional aircraft selection process. The findings of the proposed model show that the ranking results of the multiple criteria decision making models are consistent with each other, and the proposed method is efficient, and the results are valid. Finally, the Embraer E195-E2 model regional aircraft is chosen as the most suitable aircraft type.
Keywords: aircraft, regional aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44910916 Temporary Housing Respond to Disasters in Developing Countries- Case Study: Iran-Ardabil and Lorestan Province Earthquakes
Authors: Farzaneh Hadafi, Alireza Fallahi
Abstract:
Natural Disasters have always occurred through earth life. As human life developed on earth, he faced with different disasters. Since disasters would destroy his living areas and ruin his life, he learned how to respond and overcome to these matters. Nowadays, in the era of industrialized world and informatics, the man kind seeks for stages and classification of pre and post disaster process in order to identify a framework in these circumstances. Because too many parameters complicate these frameworks and proceedings, it seems that this goal has not been properly established yet and the only resource is guidelines of UNDRO (1982) [1]. This paper will discuss about temporary housing as one of an approved stage in disaster management field and investigate the affects of disapproval or dismissal of this at two earthquakes which took place in Iran.
Keywords: Temporary Housing, Temporary Sheltering, DisasterManagement, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230110915 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand
Authors: Chukiat Chaiboonsri, Satawat Wannapan
Abstract:
This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.
Keywords: Thailand tourism, maximum entropy bootstrapping approach, macroeconomic model, asymmetric information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126410914 The Integrated Management of Health Care Strategies and Differential Diagnosis by Expert System Technology: A Single-Dimensional Approach
Authors: A. B. Adehor, P. R. Burrell
Abstract:
The Integrated Management of Child illnesses (IMCI) and the surveillance Health Information Systems (HIS) are related strategies that are designed to manage child illnesses and community practices of diseases. However, both strategies do not function well together because of classification incompatibilities and, as such, are difficult to use by health care personnel in rural areas where a majority of people lack the basic knowledge of interpreting disease classification from these methods. This paper discusses a single approach on how a stand-alone expert system can be used as a prompt diagnostic tool for all cases of illnesses presented. The system combines the action-oriented IMCI and the disease-oriented HIS approaches to diagnose malaria and typhoid fever in the rural areas of the Niger-delta region.
Keywords: Differential diagnosis, Health Information System(HIS), Integrated Management of Child Illnesses (IMCI), Malaria andTyphoid fever.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186810913 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59810912 Performance Comparison and Evaluation of AdaBoost and SoftBoost Algorithms on Generic Object Recognition
Authors: Doaa Hegazy, Joachim Denzler
Abstract:
SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition benchmark. An assessment with respect to different degrees of label noise as well as a comparison to the well known AdaBoost algorithm is performed. The obtained results reveal that SoftBoost is encouraged to be used in cases when the training data is known to have a high degree of noise. Otherwise, using Adaboost can achieve better performance.Keywords: SoftBoost algorithm, AdaBoost algorithm, Generic object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182910911 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran
Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh
Abstract:
Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168110910 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119510909 Alternating Current Photovoltaic Module Model
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents modeling of an Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.
Keywords: AC PV Module, Datasheet, Matlab/Simulink, PV modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292310908 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran
Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh
Abstract:
Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.
Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55510907 Telehealth Ecosystem: Challenge and Opportunity
Authors: R. Poonsuph
Abstract:
Technological innovation plays a crucial role in virtual healthcare services. A growing number of telehealth platforms are concentrating on using digital tools to improve the quality and availability of care. As a result, telehealth represents an opportunity to redesign the way health services are delivered. The research objective is to discover a new business model for digital health services and related industries to participate with telehealth solutions. The business opportunity is valuable for healthcare investors as a startup company to further investigations or implement the telehealth platform. The paper presents a digital healthcare business model and business opportunities to related industries. These include digital healthcare services extending from a traditional business model and use cases of business opportunities to related industries. Although there are enormous business opportunities, telehealth is still challenging due to the patient adaption and digital transformation process within a healthcare organization.
Keywords: telehealth, Internet hospital, HealthTech, InsurTech
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107910906 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107610905 Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System
Authors: Zainab M. Musa, Nordin M. A. Rahman, Julaily A. Jusoh
Abstract:
The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover.Keywords: Validation, verification, formal, theorem proving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132010904 Interactive Agents with Artificial Mind
Authors: Hirohide Ushida
Abstract:
This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.Keywords: Artificial mind, emotion, interactive agent, pet robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125210903 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157510902 Machine Scoring Model Using Data Mining Techniques
Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul
Abstract:
this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395