Search results for: contact pressure and temperature dependent of friction coefficients.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5138

Search results for: contact pressure and temperature dependent of friction coefficients.

3848 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction

Authors: T. G. Emam

Abstract:

The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.

Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
3847 Incineration of Sludge in a Fluidized-Bed Combustor

Authors: Chien-Song Chyang, Yu-Chi Wang

Abstract:

For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in a pilot-scale vortexing fluidized bed. The moisture content of the sludge was 48.53%, and its LHV was 454.6 kcal/kg. Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min, respectively. Diesel burners with on-off controllers were used to control the temperature; the bed temperature was set to 750±20 °C, and the freeboard temperature was 850±20 °C. The experimental data show that the NO emission increased with bed temperature. The maximum NO emission is 139 ppm, which is in agreement with the regulation. The CO emission is low than 100 ppm through the operation period. The mean particle size of fly ash collected from baghouse decreased with operating time. The ration of bottom ash to fly ash is about 3. Compared with bottom ash, the potassium in the fly ash is much higher. It implied that the potassium content is not the key factor for aggregation of bottom ash.

Keywords: Sludge incineration, fluidized bed combustion, fly ash, bottom ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
3846 Experimental Investigation of Combustion Chamber Dimensions Effects on Pollutant Emission and Combustion Efficiency

Authors: K. Bashirnezhad, M. Joleini

Abstract:

The combustion chamber dimensions have important effects on pollutant emission in furnaces as a direct result of temperature distribution and maximum temperature value. In this paper the pollutant emission and the temperature distribution in two cylindrical furnaces with different dimensions (with similar length to diameter ratio) in similar condition have been investigated experimentally. The furnace fuel is gas oil that is used with three different flow rates. The results show that in these two cases the temperature increases to its maximum value quickly, and then decreases slowly. The results also show that increase in fuel flow rate cause to increase in NOx emission in each case, but this increase is greater in small furnace. With increase in fuel flow rate, CO emission decreases firstly, and then it increases. Combustion efficiency reduces with increase in fuel flow rate but the rate of reduction in small furnace is greater than large furnace. The results of axial temperature distribution have been compared with those have been obtained numerically and experimentally by Moghiman.

Keywords: Furnace dimensions, Oxides of Nitrogen, Carbonmonoxide, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
3845 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
3844 Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material

Authors: G. Kim, R. Sterkenburg

Abstract:

One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.

Keywords: Debonding, environmental degradation, honeycomb sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
3843 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
3842 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
3841 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays

Authors: Shu Lü, Shouming Zhong, Zixin Liu

Abstract:

In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
3840 A Review on Geomembrane Characteristics and Application in Geotechnical Engineering

Authors: Sandra Ghavam Shirazi, Komeil Valipourian, Mohammad Reza Golhashem

Abstract:

This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.

Keywords: Geomembrane, durability temperature soil mechanic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
3839 A Finite Element Method Simulation for Rocket Motor Material Selection

Authors: T. Kritsana, P. Sawitri, P. Teeratas

Abstract:

This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa.

The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.

Keywords: Rocket motor case, Finite Element Method, principal Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
3838 Defluoridation of Water by Schwertmannite

Authors: Aparajita Goswami, Mihir K Purkait

Abstract:

In the present study Schwertmannite (an iron oxide hydroxide) is selected as an adsorbent for defluoridation of water. The adsorbent was prepared by wet chemical process and was characterized by SEM, XRD and BET. The fluoride adsorption efficiency of the prepared adsorbent was determined with respect to contact time, initial fluoride concentration, adsorbent dose and pH of the solution. The batch adsorption data revealed that the fluoride adsorption efficiency was highly influenced by the studied factors. Equilibrium was attained within one hour of contact time indicating fast kinetics and the adsorption data followed pseudo second order kinetic model. Equilibrium isotherm data fitted to both Langmuir and Freundlich isotherm models for a concentration range of 5-30 mg/L. The adsorption system followed Langmuir isotherm model with maximum adsorption capacity of 11.3 mg/g. The high adsorption capacity of Schwertmannite points towards the potential of this adsorbent for fluoride removal from aqueous medium.

Keywords: Adsorption, fluoride, isotherm study, kinetics, schwertmannite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
3837 Parametric Studies of Wood Pyrolysis Particles

Authors: W. Afef, A. Mohamed Ammar, G. Kamel, O. Ahmed

Abstract:

In the present study, a numerical approach to describe the pyrolysis of a single solid particle of wood is used to study the influence of various conditions such as particle size, heat transfer coefficient, reactor temperature and heating rate. The influence of these parameters in the change of the duration of the pyrolysis cycle was studied. Mathematical modeling was employed to simulate the heat, mass transfer, and kinetic processes inside the reactor. The evolutions of the mass loss as well as the evolution of temperature inside the thick piece are investigated numerically. The elaborated model was also employed to study the effect of the reactor temperature and the rate of heating on the change of the temperature and the local loss of the mass inside the piece of wood. The obtained results are in good agreement with the experimental data available in the literature.

Keywords: Wood, Pyrolysis, Modeling, Convective heat transfer, Kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
3836 Simulation of Multiphase Flows Using a Modified Upwind-Splitting Scheme

Authors: David J. Robbins, R. Stewart Cant, Lynn F. Gladden

Abstract:

A robust AUSM+ upwind discretisation scheme has been developed to simulate multiphase flow using consistent spatial discretisation schemes and a modified low-Mach number diffusion term. The impact of the selection of an interfacial pressure model has also been investigated. Three representative test cases have been simulated to evaluate the accuracy of the commonly-used stiffenedgas equation of state with respect to the IAPWS-IF97 equation of state for water. The algorithm demonstrates a combination of robustness and accuracy over a range of flow conditions, with the stiffened-gas equation tending to overestimate liquid temperature and density profiles.

Keywords: Multiphase flow, AUSM+ scheme, liquid EOS, low Mach number models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
3835 Restricted Pedestrian Flow Performance Measures during Egress from a Complex Facility

Authors: Luthful A. Kawsar, Noraida A. Ghani, Anton A. Kamil, Adli Mustafa

Abstract:

In this paper, we use an M/G/C/C state dependent queuing model within a complex network topology to determine the different performance measures for pedestrian traffic flow. The occupants in this network topology need to go through some source corridors, from which they can choose their suitable exiting corridors. The performance measures were calculated using arrival rates that maximize the throughputs of source corridors. In order to increase the throughput of the network, the result indicates that the flow direction of pedestrian through the corridors has to be restricted and the arrival rates to the source corridor need to be controlled.

Keywords: Arrival rate, Multiple arrival sources, Probability of blocking, State dependent queuing networks, Throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
3834 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: Thermal remote sensing, insolation model, land surface temperature, geothermal anomalies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
3833 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose

Authors: N. Zanganeh, M. Zabet

Abstract:

Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first.  Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.

Keywords: Ethanol, lactose, lactulose syrup, purification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113
3832 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
3831 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation

Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo

Abstract:

Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.

Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
3830 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
3829 Fiber Optic Sensors

Authors: Bahareh Gholamzadeh, Hooman Nabovati

Abstract:

Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. these kinds of sensors modulates some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. The advantages of fiber optic sensors in contrast to conventional electrical ones make them popular in different applications and now a day they consider as a key component in improving industrial processes, quality control systems, medical diagnostics, and preventing and controlling general process abnormalities. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field.

Keywords: Fiber optic sensors, distributed sensors, sensorapplication, crack sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6496
3828 Influence of Differences of Heat Insulation Methods on Thermal Comfort of Apartment Buildings

Authors: Hikaru Sato, Hiroatsu Fukuda, Yupeng Wang

Abstract:

The aim of this study is to analyze influence of differences of heat insulation methods on indoor thermal environment and comfort of apartment buildings. This study analyzes indoor thermal environment and comfort on units of apartment buildings using calculation software "THERB" and compares three different kinds of heat insulation methods. Those are outside insulation on outside walls, inside insulation on outside walls and interior insulation. In terms of indoor thermal environment, outside insulation is the best to stabilize room temperature. In winter, room temperature on outside insulation after heating is higher than other and it is kept 3-5 degrees higher through all night. But the surface temperature with outside insulation did not dramatically increase when heating was used, which was 3 to 5oC lower than the temperature with other insulation. The PMV of interior insulation fall nearly range of comfort when the heating and cooling was use.

Keywords: Apartment Building, Indoor Thermal Environment, Insulation, PMV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
3827 Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control

Authors: Patil Ashwini, Archana Thosar

Abstract:

This paper addresses the mathematical model of wind energy system useful for designing fault tolerant control. To serve the demand of power, large capacity wind energy systems are vital. These systems are installed offshore where non planned service is very costly. Whenever there is a fault in between two planned services, the system may stop working abruptly. This might even lead to the complete failure of the system. To enhance the reliability, the availability and reduce the cost of maintenance of wind turbines, the fault tolerant control systems are very essential. For designing any control system, an appropriate mathematical model is always needed. In this paper, the two-mass model is modified by considering the frequent mechanical faults like misalignments in the drive train, gears and bearings faults. These faults are subject to a wear process and cause frictional losses. This paper addresses these faults in the mathematics of the wind energy system. Further, the work is extended to study the variations of the parameters namely generator inertia constant, spring constant, viscous friction coefficient and gear ratio; on the pole-zero plot which is related with the physical design of the wind turbine. Behavior of the wind turbine during drive train faults are simulated and briefly discussed.

Keywords: Mathematical model of wind energy system, stability analysis, shaft stiffness, viscous friction coefficient, gear ratio, generator inertia, fault tolerant control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
3826 Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations

Authors: Liangliang Tang, Chang Xu, Xingying Chen

Abstract:

GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells.

Keywords: Thermophotovoltaic cell, GaSb, GaInAsSb, diffused emitters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
3825 Air Conditioning Energy Saving by Rooftop Greenery System in Subtropical Climate in Australia

Authors: M. Anwar, M. G. Rasul, M. M. K. Khan

Abstract:

The benefits of rooftop greenery systems (such as energy savings, reduction of greenhouse gas emission for mitigating climate change and maintaining sustainable development, indoor temperature control etc.) in buildings are well recognized, however there remains very little research conducted for quantifying the benefits in subtropical climates such as in Australia. This study mainly focuses on measuring/determining temperature profile and air conditioning energy savings by implementing rooftop greenery systems in subtropical Central Queensland in Australia. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two standard shipping containers (6m x 2.4m x 2.4m) were converted into small offices, one with green roof and one without. These were used for temperature, humidity and energy consumption data collection. The study found that an energy savings of up to 11.70% and temperature difference of up to 4°C can be achieved in March in subtropical Central Queensland climate in Australia. It is expected that more energy can be saved in peak summer days (December/February) as temperature difference between green roof and non-green roof is higher in December- February.

Keywords: Extensive green roof, Rooftop greenery system, Subtropical climate, Shipping container.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
3824 Temperature Control of Industrial Water Cooler using Hot-gas Bypass

Authors: Jung-in Yoon, Seung-taek Oh, Seung-moon Baek, Jun-hyuk Choi, Jong-yeong Byun, Seok-kwon Jeong, Choon-guen Moon

Abstract:

In this study, we experiment on precise control outlet temperature of water from the water cooler with hot-gas bypass method based on PI control logic for machine tool. Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler.

Keywords: Hot-gas bypass, Water cooler, PI control, Electronic Expansion Valve, Gain tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
3823 Effect of Lubrication on the Quantity of Heat Emission of two Spur Gears in Meshing

Authors: S. A. M. Elshourbagy

Abstract:

This paper investigates the effects of lubrication on the quantity of heat emission of two spur gear. System with and without lubrication effected on the quantity of heat induced on the gear box (oil - bearings – gears). Both of lubrication and speed of motor are affected on the performance of gears. Research investigated the lubrication on the system with and without loading as well as the wear of gears and bearing's conditions. Gear box investigated includes the motor, pump, two spur gears, two shafts; speed change used pulleys and belts. Load used equal one weight ones of gear. Lubrication mechanism used jet system (upper and lower jet). Gear box we used system of jet lubrication is perpendicular direction of the contact line between two teeth. Results appeared in this work that the lubrication is the vital parameter which is affected on the performance and durability of gears and bearings. In macroscopic observation, we noted that damage of bearings happened during the absence of lubrication as well as abrasive of wear of teeth. Higher speed of motor without lubrication increased the noise, but in the presence of lubrication was decreased.

Keywords: Lubrication, jet, laser gun, spur gear, temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
3822 Experimental Study on Slicing of Sapphire with Fixed Abrasive Diamond Wire Saw

Authors: Mengjun Zhang, Yuli Sun, Dunwen Zuo, Chunxiang Xie, Chunming Zhang

Abstract:

Experimental study on slicing of sapphire with fixed abrasive diamond wire saw was conducted in this paper. The process parameters were optimized through orthogonal experiment of three factors and four levels. The effects of wire speed, feed speed and tension pressure on the surface roughness were analyzed. Surface roughness in cutting direction and feed direction were both detected. The results show that feed speed plays the most significant role on the surface roughness of sliced sapphire followed by wire speed and tension pressure. The optimized process parameters are as follows: wire speed 1.9 m/s, feed speed 0.187 mm/min and tension pressure 0.18 MPa. In the end, the results were verified by analysis of variance.

Keywords: Fixed abrasive, diamond wire saw, slicing, sapphire, orthogonal experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3140
3821 Characteristics of Suspended Solids Removal by Electrocoagulation

Authors: C. Phalakornkule, W. Worachai, T. Satitayut

Abstract:

The electrochemical coagulation of a kaolin suspension was investigated at the currents of 0.06, 0.12, 0.22, 0.44, 0.85 A (corresponding to 0.68, 1.36, 2.50, 5.00, 9.66 mA·cm-2, respectively) for the contact time of 5, 10, 20, 30, and 50 min. The TSS removal efficiency at currents of 0.06 A, 0.12 A and 0.22 A increased with the amount of iron generated by the sacrificial anode, while the removal efficiencies did not increase proportionally with the amount of iron generated at the currents of 0.44 and 0.85 A, where electroflotation was clearly observed. Zeta potential measurement illustrated the presence of the highly positive charged particles created by sorption of highly charged polymeric metal hydroxyl species onto the negative surface charged kaolin particles at both low and high applied currents. The disappearance of the individual peaks after certain contact times indicated the attraction between these positive and negative charged particles causing agglomeration. It was concluded that charge neutralization of the individual species was not the only mechanism operating in the electrocoagulation process at any current level, but electrostatic attraction was likely to co-operate or mainly operate.

Keywords: Coagulation, Electrocoagulation, Electrostatics, Suspended solids, Zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
3820 Immobilized Liquid Membrane for Propylene- Propane Separation

Authors: Maryam TakhtRavanchi, Tahereh Kaghazchi, Ali Kargari

Abstract:

Separation of propylene-propane mixture using immobilized liquid membrane was investigated. The effect of transmembrane pressure and carrier concentration on membrane separation performance was studied. It was observed that for 30:70 (vol. %) propylene-propane mixture, at pressure of 120kPa and carrier concentration of 20wt. %, a separation factor of 474 was obtained.

Keywords: Facilitated Transport, Immobilized Liquid Membrane, Propylene-Propane Separation, Silver Nitrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
3819 Design of a Tube Vent to Enhance the Role of Roof Solar Collector

Authors: Eakkasak Susakunphaisan, Pichai Namprakai, Withaya Puangsombut

Abstract:

The objective of this paper was to designing a ventilation system to enhance the performance of roof solar collector (RSC) for reducing heat accumulation inside the house. The RSC has 1.8 m2 surface area made of CPAC monier roof tiles on the upper part and gypsum board on the lower part. The space between CPAC monier and gypsum board was fixed at 14 cm. Ventilation system of modified roof solar collector (modified RSC) consists of 9 tubes of 0.15m diameter and installed in the lower part of RSC. Experimental result showed that the temperature of the room, and attic temperature. The average temperature reduction of room of house used modified RSC is about 2oC. and the percentage of room temperature reduction varied between 0 to 10%. Therefore, modified RSC is an interesting option in the sense that it promotes solar energy and conserve energy.

Keywords: roof solar collector, heat accumulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501