Search results for: Support vector data description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9250

Search results for: Support vector data description

7960 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
7959 A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference

Authors: Azhar Rauf, Sareer Badshah, Shah Khusro

Abstract:

This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.

Keywords: Fine Grained Security, Data Accessibility, Inference, Row, Cell, Column Level Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
7958 Towards an Automatic Translation of Colored Petri Nets to Maude Language

Authors: Noura Boudiaf, Abdelhamid Djebbar

Abstract:

Colored Petri Nets (CPN) are very known kind of high level Petri nets. With sound and complete semantics, rewriting logic is one of very powerful logics in description and verification of non-deterministic concurrent systems. Recently, CPN semantics are defined in terms of rewriting logic, allowing us to built models by formal reasoning. In this paper, we propose an automatic translation of CPN to the rewriting logic language Maude. This tool allows graphical editing and simulating CPN. The tool allows the user drawing a CPN graphically and automatic translating the graphical representation of the drawn CPN to Maude specification. Then, Maude language is used to perform the simulation of the resulted Maude specification. It is the first rewriting logic based environment for this category of Petri Nets.

Keywords: Colored Petri Nets, Rewriting Logic, Maude, Graphical Edition, Automatic Translation, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
7957 Modeling User Behaviour by Planning

Authors: Alfredo Milani, Silvia Suriani

Abstract:

A model of user behaviour based automated planning is introduced in this work. The behaviour of users of web interactive systems can be described in term of a planning domain encapsulating the timed actions patterns representing the intended user profile. The user behaviour recognition is then posed as a planning problem where the goal is to parse a given sequence of user logs of the observed activities while reaching a final state. A general technique for transforming a timed finite state automata description of the behaviour into a numerical parameter planning model is introduced. Experimental results show that the performance of a planning based behaviour model is effective and scalable for real world applications. A major advantage of the planning based approach is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.

Keywords: User behaviour, Timed Transition Automata, Automated Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
7956 Sparsity-Aware and Noise-Robust Subband Adaptive Filter

Authors: Young-Seok Choi

Abstract:

This paper presents a subband adaptive filter (SAF) for a system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF) achieves both robustness against impulsive noise and much improved convergence behavior than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.

Keywords: Subband adaptive filter, l0-norm, sparse system, robustness, impulsive interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
7955 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
7954 Revised PLWAP Tree with Non-frequent Items for Mining Sequential Pattern

Authors: R. Vishnu Priya, A. Vadivel

Abstract:

Sequential pattern mining is a challenging task in data mining area with large applications. One among those applications is mining patterns from weblog. Recent times, weblog is highly dynamic and some of them may become absolute over time. In addition, users may frequently change the threshold value during the data mining process until acquiring required output or mining interesting rules. Some of the recently proposed algorithms for mining weblog, build the tree with two scans and always consume large time and space. In this paper, we build Revised PLWAP with Non-frequent Items (RePLNI-tree) with single scan for all items. While mining sequential patterns, the links related to the nonfrequent items are not considered. Hence, it is not required to delete or maintain the information of nodes while revising the tree for mining updated transactions. The algorithm supports both incremental and interactive mining. It is not required to re-compute the patterns each time, while weblog is updated or minimum support changed. The performance of the proposed tree is better, even the size of incremental database is more than 50% of existing one. For evaluation purpose, we have used the benchmark weblog dataset and found that the performance of proposed tree is encouraging compared to some of the recently proposed approaches.

Keywords: Sequential pattern mining, weblog, frequent and non-frequent items, incremental and interactive mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
7953 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
7952 Role of GIS in Distribution Power Systems

Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam

Abstract:

With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.

Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5505
7951 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
7950 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
7949 Overhead Estimation over Capacity of Mobile WiMAX

Authors: Saeed AL-Rashdy, Qing Guo

Abstract:

The IEEE802.16 standard which has emerged as Broadband Wireless Access (BWA) technology, promises to deliver high data rate over large areas to a large number of subscribers in the near future. This paper analyze the effect of overheads over capacity of downlink (DL) of orthogonal frequency division multiple access (OFDMA)–based on the IEEE802.16e mobile WiMAX system with and without overheads. The analysis focuses in particular on the impact of Adaptive Modulation and Coding (AMC) as well as deriving an algorithm to determine the maximum numbers of subscribers that each specific WiMAX sector may support. An analytical study of the WiMAX propagation channel by using Cost- 231 Hata Model is presented. Numerical results and discussion estimated by using Matlab to simulate the algorithm for different multi-users parameters.

Keywords: BWA, mobile WiMAX, capacity, AMC , overheads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
7948 A Retrospective Analysis of a Professional Learning Community: How Teachers- Capacities Shaped It

Authors: S.Pancucci

Abstract:

The purpose of this paper is to describe the process of setting up a learning community within an elementary school in Ontario, Canada. The description is provided through reflection and examination of field notes taken during the yearlong training and implementation process. Specifically the impact of teachers- capacity on the creation of a learning community was of interest. This paper is intended to inform and add to the debate around the tensions that exist in implementing a bottom-up professional development model like the learning community in a top-down organizational structure. My reflections of the process illustrate that implementation of the learning community professional development model may be difficult and yet transformative in the professional lives of the teachers, students, and administration involved in the change process. I conclude by suggesting the need for a new model of professional development that requires a transformative shift in power dynamics and a shift in the view of what constitutes effective professional learning.

Keywords: Learning community model, professionaldevelopment, teacher capacity, teacher leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
7947 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia

Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho

Abstract:

This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.

Keywords: Carbon silicon, drug delivery system, iontophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
7946 Moving Data Mining Tools toward a Business Intelligence System

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.

Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
7945 Analysis of Diverse Clustering Tools in Data Mining

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.

Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
7944 A Monte Carlo Method to Data Stream Analysis

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham

Abstract:

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
7943 Performance of an Absorption Refrigerator Using a Solar Thermal Collector

Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim

Abstract:

In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.

Keywords: Absorption, ammonia, cold room, solar collector, vacuum tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
7942 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.

Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392
7941 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood

Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid

Abstract:

Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.

Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
7940 Implementing Learner-Centered Teaching Approach in Higher Education

Authors: Iman Ali Ahmed Al-Rashed

Abstract:

This paper directs attention to the limitations of the teacher-centered strategy in teaching. The aim of this study is to draw more educational attention to learner-centered strategy in order to shift the emphasis from the traditional concept of teaching to a new concept in teaching. To begin bridging the traditional concept of teaching and the new concept, the study will explore the new concept of teaching to support teaching in Arab World generally and in Iraq specifically. A qualitative case study orientation was used to collect data in the form of classroom observations, interviews and field notes. The teaching practices used by three university instructors are investigated and according to the findings, some explanations and recommendations are made.

Keywords: Case study, learner-centered strategy, qualitative study, teacher-centered strategy, traditional teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
7939 Students’ Attitudes Toward Seeking Psychological Help

Authors: P. Gudelj, E. Franić, M. Kolega

Abstract:

Mental health is crucial for personal, social, and socio-economic development, becoming an increasingly relevant topic, especially in the post-global pandemic era. One vulnerable demographic comprises students who, during the pandemic, faced challenges such as adapting to new educational methods, societal or residential changes, heightened stress, responsibilities, and entering the job market. These life challenges proved insurmountable for some individuals during this phase. This research aimed to examine students' attitudes towards individuals seeking psychological help. By gaining a better understanding of young people's perceptions of seeking psychological assistance, a clearer insight into how to make psychological support more accessible and acceptable can be achieved. A questionnaire was completed by 210 students from various disciplines at the University of Zagreb. While the majority of students expressed a positive attitude towards seeking psychological help, a very small percentage reported having sought it. One of the most common obstacles to seeking appropriate help was a lack of financial means, with the most significant motivators being the positive experiences of those who sought help and an affordable cost.

Keywords: Mental health, students, psychological support, attitudes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88
7938 Balanced and Unbalanced Voltage Sag Mitigation Using DSTATCOM with Linear and Nonlinear Loads

Authors: H. Nasiraghdam, A. Jalilian

Abstract:

DSTATCOM is one of the equipments for voltage sag mitigation in power systems. In this paper a new control method for balanced and unbalanced voltage sag mitigation using DSTATCOM is proposed. The control system has two loops in order to regulate compensator current and load voltage. Delayed signal cancellation has been used for sequence separation. The compensator should protect sensitive loads against different types of voltage sag. Performance of the proposed method is investigated under different types of voltage sags for linear and nonlinear loads. Simulation results show appropriate operation of the proposed control system.

Keywords: Custom power, power quality, voltage sagmitigation, current vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
7937 Innovation Policy and Development of Creative Industries: Case Study of Lithuanian Animation Industry

Authors: Tomas Mitkus, Vaida Nedzinskaitė-Mitkė

Abstract:

The objective of this study is to identify and explore how adequate is modern innovation support mechanism to developed creative industries. We argue that current development and support strategy for creative industries, although acknowledge high correlation between innovation and creativity, do not seek to improve conditions to promote systematic innovation development in the creative sector. Using the Lithuanian animation industry as a case study, this paper will examine innovation contribution to creativity and, for that matter, the competitiveness of animation enterprises. This paper proposes insights that contribute to theoretical and practical discussions on how creative profile companies build national and international competitiveness through innovations. The conclusions suggest that development of creative industries could greatly benefit if policymakers would implement tools that would encourage creative profile enterprises to invest in to development of innovation at a constant rate.

Keywords: Creative industries, animation, innovation, innovation policy, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
7936 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

Authors: Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

Keywords: Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
7935 Improved Data Warehousing: Lessons Learnt from the Systems Approach

Authors: Roelien Goede

Abstract:

Data warehousing success is not high enough. User dissatisfaction and failure to adhere to time frames and budgets are too common. Most traditional information systems practices are rooted in hard systems thinking. Today, the great systems thinkers are forgotten by information systems developers. A data warehouse is still a system and it is worth investigating whether systems thinkers such as Churchman can enhance our practices today. This paper investigates data warehouse development practices from a systems thinking perspective. An empirical investigation is done in order to understand the everyday practices of data warehousing professionals from a systems perspective. The paper presents a model for the application of Churchman-s systems approach in data warehouse development.

Keywords: Data warehouse development, Information systemsdevelopment, Interpretive case study, Systems thinking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
7934 Centralized Resource Management for Network Infrastructure Including Ip Telephony by Integrating a Mediator Between the Heterogeneous Data Sources

Authors: Mohammed Fethi Khalfi, Malika Kandouci

Abstract:

Over the past decade, mobile has experienced a revolution that will ultimately change the way we communicate.All these technologies have a common denominator exploitation of computer information systems, but their operation can be tedious because of problems with heterogeneous data sources.To overcome the problems of heterogeneous data sources, we propose to use a technique of adding an extra layer interfacing applications of management or supervision at the different data sources.This layer will be materialized by the implementation of a mediator between different host applications and information systems frequently used hierarchical and relational manner such that the heterogeneity is completely transparent to the VoIP platform.

Keywords: TOIP, Data Integration, Mediation, informationcomputer system, heterogeneous data sources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
7933 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: Homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
7932 Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator

Authors: E. Ahvar, M. Fathy

Abstract:

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords: Ad hoc Network, energy consumption, Glomosim, routing protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
7931 The Rock Paintings and Engravings of Kabylia Region, Algeria: Sites of Azru Imeyazen, Tarihant, Algeria

Authors: Samia Ait Ali Yahia

Abstract:

Rock paintings and engravings are widespread over all the Kabylia region of Algeria. The paintings are predominantly adorned with red ochre ornaments, while some engravings can also be found on sandstone rocks. These artistic expressions can be found in various locations, such as shelters, rocks, and sandstone blocks in the northern part of Kabylia. These sites showcase a diverse range of decorations, including human figures, animal silhouettes, enigmatic designs, symbolic drawings, engravings, and Libyan characters. The research will involve conducting fieldwork at the Azru Imeyazen site to identify and study the different paintings and engravings present. This research aims to provide a detailed description of the rock paintings and engravings found in Kabylia, specifically focusing on the Azru Imeyazen (Tarihant) site.

Keywords: Rock paintings, engraving, Kabylia, Tarihant, Azru Imayazen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90