Search results for: Pattern Formation
393 Effect of Pack Aluminising Conditions on βNiAl Coatings
Authors: A. D. Chandio, P. Xiao
Abstract:
In this study, nickel aluminide coatings were deposited onto CMSX-4 single crystal superalloy and pure Ni substrates by using in-situ chemical vapour deposition (CVD) technique. The microstructural evolutions and coating thickness (CT) were studied upon the variation of processing conditions i.e. time and temperature. The results demonstrated (under identical conditions) that coating formed on pure Ni contains no substrate entrapments and have lower CT in comparison to one deposited on the CMSX-4 counterpart. In addition, the interdiffusion zone (IDZ) of Ni substrate is a γ’-Ni3Al in comparison to the CMSX-4 alloy that is βNiAl phase. The higher CT on CMSX-4 superalloy is attributed to presence of γ-Ni/γ’-Ni3Al structure which contains ~ 15 at.% Al before deposition (that is already present in superalloy). Two main deposition parameters (time and temperature) of the coatings were also studied in addition to standard comparison of substrate effects. The coating formation time was found to exhibit profound effect on CT, whilst temperature was found to change coating activities. In addition, the CT showed linear trend from 800 to 1000 °C, thereafter reduction was observed. This was attributed to the change in coating activities.
Keywords: βNiAl, in-situ CVD, CT, CMSX-4, Ni, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411392 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.
Keywords: Artificial neural networks, digital image processing, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551391 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking
Authors: M. Bahgat, H. Hanafy, H. Al-Tassan
Abstract:
Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.Keywords: Ironmaking, coating, steel dust, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937390 A Study to Assess the Energy Saving Potential and Economic Analysis of an Agro Based Industry in Karnataka, India
Authors: Sangamesh G. Sakri, Akash N. Patil, Sadashivappa M. Kotli
Abstract:
Agro based industries in India are considered as the micro, small and medium enterprises (MSME). In India, MSMEs contribute approximately 8 percent of the country’s GDP, 42 percent of the manufacturing output and 40 percent of exports. The toor dal (scientific name Cajanus cajan, commonly known as yellow gram, pigeon pea) is the second largest pulse crop in India accounting for about 20% of total pulse production. The toor dal milling industry in India is one of the major agro-processing industries in the country. Most of the dal mills are concentrated in pulse producing areas, which are spread all over the country. In Karnataka state, Gulbarga is a district, where toor dal is the main crop and is grown extensively. There are more than 500 dal mills in and around the Gulbarga district to process dal. However, the majority of these dal milling units use traditional methods of processing which are energy and capital intensive. There exists a huge energy saving potential in these mills. An energy audit is conducted on a dal mill in Gulbarga to understand the energy consumption pattern to assess the energy saving potential, and an economic analysis is conducted to identify energy conservation opportunities.Keywords: Conservation, demand side management, load curve, toor dal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524389 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.
Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676388 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset
Authors: Sunita Jahirabadkar, Parag Kulkarni
Abstract:
Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.
Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017387 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488386 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760385 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection
Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos
Abstract:
Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.
The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.
Keywords: Halloysite, Palygorskite, Photocatalysis, Titanium Dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597384 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System
Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha
Abstract:
A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193383 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition
Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu
Abstract:
In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.Keywords: Biometry, image processing, pattern recognition, speech analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943382 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses
Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi
Abstract:
Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.
Keywords: Fire detector, rack, response characteristic, warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983381 Development of Maximum Entropy Method for Prediction of Droplet-size Distribution in Primary Breakup Region of Spray
Authors: E. Movahednejad, F. Ommi
Abstract:
Droplet size distributions in the cold spray of a fuel are important in observed combustion behavior. Specification of droplet size and velocity distributions in the immediate downstream of injectors is also essential as boundary conditions for advanced computational fluid dynamics (CFD) and two-phase spray transport calculations. This paper describes the development of a new model to be incorporated into maximum entropy principle (MEP) formalism for prediction of droplet size distribution in droplet formation region. The MEP approach can predict the most likely droplet size and velocity distributions under a set of constraints expressing the available information related to the distribution. In this article, by considering the mechanisms of turbulence generation inside the nozzle and wave growth on jet surface, it is attempted to provide a logical framework coupling the flow inside the nozzle to the resulting atomization process. The purpose of this paper is to describe the formulation of this new model and to incorporate it into the maximum entropy principle (MEP) by coupling sub-models together using source terms of momentum and energy. Comparison between the model prediction and experimental data for a gas turbine swirling nozzle and an annular spray indicate good agreement between model and experiment.Keywords: Droplet, instability, Size Distribution, Turbulence, Maximum Entropy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579380 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials
Authors: Pradeep M., N. S. Mahesh, Raja Hussain
Abstract:
Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.
Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5188379 Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic
Authors: C. Nutphuang, S. Chirarattananon, V.D. Hien
Abstract:
In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.Keywords: CFD program, natural ventilation, forcedconvection, heat transfer, air flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222378 Understanding the Selectional Preferences of the Twitter Mentions Network
Authors: R. Sudhesh Solomon, P. Y. K. L. Srinivas, Abhay Narayan, Amitava Das
Abstract:
Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.Keywords: Social network analysis, information diffusion, personality and values, Twitter Mentions Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745377 Effect of Zinc Chloride Activation on Physicochemical Characteristics of Cassava Peel and Waste Bamboo Activated Carbon
Authors: Olayinka Omotosho, Anthony Amori
Abstract:
Cassava peels and bamboo waste materials discarded from construction are two sources of waste that could constitute serious menace where they exist in large quantities and inadequately handled. The study examined the physicochemical characteristics of activated carbon materials derived from cassava peels and bamboo waste materials discarded from construction site. Both materials were subjected to carbonization and chemical activation using zinc chloride. Results show that the chemical activation of the materials had a more effect on pore formation in cassava peels than in bamboo materials. Bamboo material exhibited a reverse trend for zinc and sulphate ion decontamination efficiencies as the value of zinc chloride impregnation varied unlike cassava peel carbon biomass which exhibited a more consistent result of decontamination efficiency for the seven contaminants tested. Although waste bamboo biomass exhibited higher adsorption intensity as indicated by values of decontamination for most of the contaminants tested, the cassava peel carbon biomass showed a more balanced adsorption level.
Keywords: Zinc chloride, cassava peels, activated carbon, bamboo waste, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515376 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in different group aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.
Keywords: Asynchronous Discussion Forums, Content Analysis, Knowledge Construction, Social Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210375 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.
Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334374 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment
Authors: J. Bolobajev, M. Trapido, A. Goi
Abstract:
The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.
Keywords: Ferric sludge reuse, ferric iron reductant, water treatment, organic pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667373 Landslide, Earthquake and Flood Hazard Risks of Izmir Metropolitan City, A Case: Altindag Landslide Areas
Authors: Ahmet Kivanc Kutluca, Semahat Ozdemir
Abstract:
Urban disaster risks and vulnerabilities are great problems for Turkey. The annual loss of life and property through disaster in the world-s major metropolitan areas is increasing. Urban concentrations of the poor and less-informed in environmentally fragile locations suffer the impact of disaster disproportionately. Gecekondu (squatter) developments will compound the inherent risks associated with high-density environments, in appropriate technologies, and inadequate infrastructure. On the other hand, there are many geological disadvantages such as sitting on top of active tectonic plate boundaries, and why having avalanche, flood, and landslide and drought prone areas in Turkey. However, this natural formation is inevitable; the only way to survive in such a harsh geography is to be aware of importance of these natural events and to take political and physical measures. The main aim of this research is to bring up the magnitude of natural hazard risks in Izmir built-up zone, not being taken into consideration adequately. Because the dimensions of the peril are not taken seriously enough, the natural hazard risks, which are commonly well known, are not considered important or they are being forgotten after some time passes. Within this research, the magnitude of natural hazard risks for Izmir is being presented in the scope of concrete and local researches over Izmir risky areas.
Keywords: Earthquake, Flood, Landslide, Natural Hazard Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104372 Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology
Authors: M. Tazky, R. Hela, P. Novosad, L. Osuska
Abstract:
This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash.
Keywords: High-temperature fly ash, fluidised bed combustion fly ash, pozzolanic, CaO (calcium oxide), rheology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783371 Face Recognition Using Double Dimension Reduction
Authors: M. A Anjum, M. Y. Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.
Keywords: Biometrics, DCT, Face Recognition, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491370 The Design and Applied of Learning Management System via Social Media on Internet: Case Study of Operating System for Business Subject
Authors: Pimploi Tirastittam, Sawanath Treesathon, Amornrath Ongkawat
Abstract:
Learning Management System (LMS) is the system which uses to manage the learning in order to grouping the content and learning activity between the lecturer and learner including online examination and evaluation. Nowadays, it is the borderless learning era so the learning activities can be accessed from everywhere in the world and also anytime via the information technology and media. The learner can easily access to the knowledge so the different in time and distance is not a constraint for learning anymore. The learning pattern which was used in this research is the integration of the in-class learning and online learning via internet and will be able to monitor the progress by the Learning management system which will create the fast response and accessible learning process via the social media. In order to increase the capability and freedom of the learner, the system can show the current and history of the learning document, video conference and also has the chat room for the learner and lecturer to interact to each other. So the objectives of the “The Design and Applied of Learning Management System via Social Media on Internet: Case Study of Operating System for Business Subject” are to expand the opportunity of learning and to increase the efficiency of learning as well as increase the communication channel between lecturer and student. The data of this research was collect from 30 users of the system which are students who enroll in the subject. And the result of the research is in the “Very Good” which is conformed to the hypothesis.
Keywords: Learning Management System, Social Media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877369 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow
Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim
Abstract:
Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104368 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals
Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari
Abstract:
Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.
Keywords: Alzheimer's disease, image and signal processing, medial temporal atrophy, LOO Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046367 Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching
Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker
Abstract:
We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.
Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873366 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422365 Influence of Outer Corner Radius in Equal Channel Angular Pressing
Authors: Basavaraj V. Patil, Uday Chakkingal, T. S. Prasanna Kumar
Abstract:
Equal Channel Angular Pressing (ECAP) is currently being widely investigated because of its potential to produce ultrafine grained microstructures in metals and alloys. A sound knowledge of the plastic deformation and strain distribution is necessary for understanding the relationships between strain inhomogeneity and die geometry. Considerable research has been reported on finite element analysis of this process, assuming threedimensional plane strain condition. However, the two-dimensional models are not suitable due to the geometry of the dies, especially in cylindrical ones. In the present work, three-dimensional simulation of ECAP process was carried out for six outer corner radii (sharp to 10 mm in steps of 2 mm), with channel angle 105¶Çü▒, for strain hardening aluminium alloy (AA 6101) using ABAQUS/Standard software. Strain inhomogeneity is presented and discussed for all cases. Pattern of strain variation along selected radial lines in the body of the workpiece is presented. It is found from the results that the outer corner has a significant influence on the strain distribution in the body of work-piece. Based on inhomogeneity and average strain criteria, there is an optimum outer corner radius.Keywords: Equal Channel Angular Pressing, Finite Element Analysis, strain inhomogeneity, plastic equivalent strain, ultra fine grain size, aluminium alloy 6101.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246364 Trajectory Guided Recognition of Hand Gestures having only Global Motions
Authors: M. K. Bhuyan, P. K. Bora, D. Ghosh
Abstract:
One very interesting field of research in Pattern Recognition that has gained much attention in recent times is Gesture Recognition. In this paper, we consider a form of dynamic hand gestures that are characterized by total movement of the hand (arm) in space. For these types of gestures, the shape of the hand (palm) during gesturing does not bear any significance. In our work, we propose a model-based method for tracking hand motion in space, thereby estimating the hand motion trajectory. We employ the dynamic time warping (DTW) algorithm for time alignment and normalization of spatio-temporal variations that exist among samples belonging to the same gesture class. During training, one template trajectory and one prototype feature vector are generated for every gesture class. Features used in our work include some static and dynamic motion trajectory features. Recognition is accomplished in two stages. In the first stage, all unlikely gesture classes are eliminated by comparing the input gesture trajectory to all the template trajectories. In the next stage, feature vector extracted from the input gesture is compared to all the class prototype feature vectors using a distance classifier. Experimental results demonstrate that our proposed trajectory estimator and classifier is suitable for Human Computer Interaction (HCI) platform.
Keywords: Hand gesture, human computer interaction, key video object plane, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740