Search results for: Image detection
1410 The Perception of Customer Satisfaction in Textile Industry According to Genders in Turkey
Authors: Ikilem Gocek, Senem Kursun, Yesim Iridag Beceren
Abstract:
The customer satisfaction for textile sector carries great importance like the customer satisfaction for other sectors carry. Especially, if it is considered that gaining new customers create four times more costs than protecting existing customers from leaving, it can be seen that the customer satisfaction plays a great role for the firms. In this study the affecting independent variables of customer satisfaction are chosen as brand image, perceived service quality and perceived product quality. By these independent variables, it is investigated that if any differences exist in perception of customer satisfaction according to the Turkish textile consumers in the view of gender. In data analysis of this research the SPSS program is used.Keywords: Customer satisfaction, textile industry, brand image, service quality, product quality, gender.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44771409 Sensorless Commutation Control of Switched Reluctance Motor
Authors: N.H. Mvungi
Abstract:
This paper addresses control of commutation of switched reluctance (SR) motor without the use of a physical position detector. Rotor position detection schemes for SR motor based on magnetisation characteristics of the motor use normal excitation or applied current /voltage pulses. The resulting schemes are referred to as passive or active methods respectively. The research effort is in realizing an economical sensorless SR rotor position detector that is accurate, reliable and robust to suit a particular application. An effective and reliable means of generating commutation signals of an SR motor based on inductance profile of its stator windings determined using active probing technique is presented. The scheme has been validated online using a 4-phase 8/6 SR motor and an 8-bit processor.Keywords: Position detection, rotor position, sensorless, switched reluctance, SR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28651408 Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes
Authors: Hassan A. Alshahrani, Mehdi H. Hojjati
Abstract:
In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.Keywords: Bending stiffness, out of autoclave prepreg, forming process, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16871407 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: Malware detection, network security, targeted attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61071406 A Novel Non-Uniformity Correction Algorithm Based On Non-Linear Fit
Authors: Yang Weiping, Zhang Zhilong, Zhang Yan, Chen Zengping
Abstract:
Infrared focal plane arrays (IRFPA) sensors, due to their high sensitivity, high frame frequency and simple structure, have become the most prominently used detectors in military applications. However, they suffer from a common problem called the fixed pattern noise (FPN), which severely degrades image quality and limits the infrared imaging applications. Therefore, it is necessary to perform non-uniformity correction (NUC) on IR image. The algorithms of non-uniformity correction are classified into two main categories, the calibration-based and scene-based algorithms. There exist some shortcomings in both algorithms, hence a novel non-uniformity correction algorithm based on non-linear fit is proposed, which combines the advantages of the two algorithms. Experimental results show that the proposed algorithm acquires a good effect of NUC with a lower non-uniformity ratio.Keywords: Non-uniformity correction, non-linear fit, two-point correction, temporal Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23161405 Using Set Up Candid Clips as Viral Marketing via New Media
Authors: P. Suparada, D. Eakapotch
Abstract:
This research’s objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire from 50 random sampling representative samples and in-depth interview from experts in publicizing and advertising fields. The findings indicated the positive and negative effects to the brands’ image and presenters’ image of product named “Scotch 100” and “Snickers” that used set up candid clips via new media for publicizing and advertising in Thailand. It will be useful for fields of publicizing and advertising in the new media forms.
Keywords: Candid Clip, Effect, New Media, Social Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16291404 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising
Authors: Hamid A. Jalab, Rabha W. Ibrahim
Abstract:
This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.
Keywords: Fractional calculus, fractional differential operator, fractional mask, fractional filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30031403 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals
Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari
Abstract:
Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.
Keywords: Alzheimer's disease, image and signal processing, medial temporal atrophy, LOO Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491402 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: F. Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the acquisition of the sample images ended being very unreliable.
Keywords: Segmentation, classification, color space, skin tone, Fitzpatrick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171401 A new Adaptive Approach for Histogram based Mouth Segmentation
Authors: Axel Panning, Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.Keywords: Feature extraction, Segmentation, Image processing, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881400 Source Direction Detection based on Stationary Electronic Nose System
Authors: Jie Cai, David C. Levy
Abstract:
Electronic nose (array of chemical sensors) are widely used in food industry and pollution control. Also it could be used to locate or detect the direction of the source of emission odors. Usually this task is performed by electronic nose (ENose) cooperated with mobile vehicles, but when a source is instantaneous or surrounding is hard for vehicles to reach, problem occurs. Thus a method for stationary ENose to detect the direction of the source and locate the source will be required. A novel method which uses the ratio between the responses of different sensors as a discriminant to determine the direction of source in natural wind surroundings is presented in this paper. The result shows that the method is accurate and easily to be implemented. This method could be also used in movably, as an optimized algorithm for robot tracking source location.Keywords: Electronic nose, Nature wind situation, Source direction detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13301399 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit
Authors: Davit Mirzoyan, Ararat Khachatryan
Abstract:
A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.Keywords: Detection, monitoring, process corner, process variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13251398 A Robust Diverged Localization and Recognition of License Registration Characters
Authors: M. Sankari, R. Bremananth, C.Meena
Abstract:
Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments.
Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18951397 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network
Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan
Abstract:
The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.
Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30111396 Detection of Power Quality Disturbances using Wavelet Transform
Authors: Sudipta Nath, Arindam Dey, Abhijit Chakrabarti
Abstract:
This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.Keywords: Power quality, detection of disturbance, wavelet transform, multiresolution signal decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34241395 National Specific of Idioms in Kazakh and Korean Languages
Authors: Akerke B. Abagan, Baiyan N. Jubatova
Abstract:
It is well known that the phraseology of a language - the phenomenon of identity. This uniqueness is due to the fact that "there are idioms image-based views of reality that shows mainly of everyday empirical, historical and spiritual experience of a language community, associated with its cultural traditions. The article says that the phraseological units very clearly show the image of the people and give us a great view of the national identity. With the phraseology of the Kazakh and Korean language can understand the mentality of the nation, identity, perception of people. It is in the phraseological units can surprise the culture and customs of the people. Phraseological units store and transmit information about the level of material and spiritual culture of the people, his life, past and present, the development of society in general. And in Korean and Kazakh languages idioms occupy a particularly important role.
Keywords: Comparative method, idioms, lingvoculture, phraseology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29701394 Shift Invariant Support Vector Machines Face Recognition System
Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas
Abstract:
In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.Keywords: Face recognition, support vector machines, shiftinvariance, image registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17571393 An Elaborate Survey on Node Replication Attack in Static Wireless Sensor Networks
Authors: N. S. Usha, E. A. Mary Anita
Abstract:
Recent innovations in the field of technology led to the use of wireless sensor networks in various applications, which consists of a number of small, very tiny, low-cost, non-tamper proof and resource constrained sensor nodes. These nodes are often distributed and deployed in an unattended environment, so as to collaborate with each other to share data or information. Amidst various applications, wireless sensor network finds a major role in monitoring battle field in military applications. As these non-tamperproof nodes are deployed in an unattended location, they are vulnerable to many security attacks. Amongst many security attacks, the node replication attack seems to be more threatening to the network users. Node Replication attack is caused by an attacker, who catches one true node, duplicates the first certification and cryptographic materials, makes at least one or more copies of the caught node and spots them at certain key positions in the system to screen or disturb the network operations. Preventing the occurrence of such node replication attacks in network is a challenging task. In this survey article, we provide the classification of detection schemes and also explore the various schemes proposed in each category. Also, we compare the various detection schemes against certain evaluation parameters and also its limitations. Finally, we provide some suggestions for carrying out future research work against such attacks.
Keywords: Clone node, data security, detection schemes, node replication attack, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8081392 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.
Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7291391 A Lossless Watermarking Based Authentication System For Medical Images
Authors: Samia Boucherkha, Mohamed Benmohamed
Abstract:
In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.Keywords: Medical Imaging, Invertible Watermarking, Authentication, Integrity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26651390 Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser
Authors: John Cleary, Conor Slater, Dermot Diamond
Abstract:
A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.Keywords: Microfluidic, phosphate, sensor, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171389 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.
Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4491388 Scintigraphic Image Coding of Region of Interest Based On SPIHT Algorithm Using Global Thresholding and Huffman Coding
Authors: A. Seddiki, M. Djebbouri, D. Guerchi
Abstract:
Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.
Keywords: Global Thresholding Transform, Huffman Coding, Region of Interest, SPIHT Coding, Scintigraphic images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19791387 Investigation on Feature Extraction and Classification of Medical Images
Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30131386 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: H. K. Hwang, Zekeriya Aliyazicioglu, Solomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr
Abstract:
Multiple-input multiple-output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection,resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO uniformly-spaced linear array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, pseudo random (PN) sequence length, number of snapshots, and signal to noise ratio (SNR). The results of MIMO are compared to a traditional array antenna.
Keywords: Multiple-input multiple-output (MIMO) radar, phased array antenna, target detection, radar signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28061385 NOHIS-Tree: High-Dimensional Index Structure for Similarity Search
Authors: Mounira Taileb, Sami Touati
Abstract:
In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.Keywords: High-dimensional indexing, k-nearest neighborssearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14441384 Human Face Detection and Segmentation using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper we propose a novel method for human face segmentation using the elliptical structure of the human head. It makes use of the information present in the edge map of the image. In this approach we use the fact that the eigenvalues of covariance matrix represent the elliptical structure. The large and small eigenvalues of covariance matrix are associated with major and minor axial lengths of an ellipse. The other elliptical parameters are used to identify the centre and orientation of the face. Since an Elliptical Hough Transform requires 5D Hough Space, the Circular Hough Transform (CHT) is used to evaluate the elliptical parameters. Sparse matrix technique is used to perform CHT, as it squeeze zero elements, and have only a small number of non-zero elements, thereby having an advantage of less storage space and computational time. Neighborhood suppression scheme is used to identify the valid Hough peaks. The accurate position of the circumference pixels for occluded and distorted ellipses is identified using Bresenham-s Raster Scan Algorithm which uses the geometrical symmetry properties. This method does not require the evaluation of tangents for curvature contours, which are very sensitive to noise. The method has been evaluated on several images with different face orientations.Keywords: Circular Hough Transform, Covariance matrix, Eigenvalues, Elliptical Hough Transform, Face segmentation, Raster Scan Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171383 Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences
Authors: María S. Avila-García, John N. Carter, Robert I. Damper
Abstract:
An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.
Keywords: Vocal tract imaging, speech production, active shapemodels, dynamic Hough transform, object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351382 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method
Authors: Shumin Hou, Yourong Li, Sanxing Zhao
Abstract:
Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.
Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261381 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672