Search results for: neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2396

Search results for: neural networks

1136 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu

Abstract:

In this study, an Artificial Neural Network (ANN) analytical method has been developed for analyzing earthquake performances of the Reinforced Concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code-2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Keywords: Artificial neural network, earthquake, performance, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
1135 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training

Authors: D. Uma Devi, P. Seetha Ramaiah

Abstract:

Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.

Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
1134 How to Modernise the European Competition Network (ECN)

Authors: Dorota Galeza

Abstract:

This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such a structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonisation of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures.

Keywords: Antitrust, Competition, Networks, Path Dependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1133 Co-Authorship Networks of Scientific Collaboration

Authors: Juha Kettunen

Abstract:

This study analyzes collaborative and networked academic authorship in higher education. The literature review shows evidence that single authorship has made a gradual paradigm shift to joint authorship. The empirical evidence from the Turku University of Applied Sciences indicates that collaborative authorship has notably increased in the last few years. Co-authorship has extended outside the institution to other domestic and international academic organizations. Co-authorship not only increase the merits of academic scholars but builds and maintains networks of research and development. The results of this study help the authors, editors and partners of research and development projects to have a more concrete understanding of how co-authorship has developed and spread beyond higher education institutions.

Keywords: Co-authorship, social networking, higher education, research and development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1132 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: Model-driven development, wireless sensor networks, data acquisition, separation of concern, layered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
1131 Wireless Control for an Induction Motor

Authors: Benmabrouk. Zaineb, Ben Hamed. Mouna, Lassaad. Sbita

Abstract:

This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.

Keywords: Digital drives, Induction motor, Remote control, Virtual Network Computing VNC, Wireless Local Area NetworkWiFi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
1130 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
1129 Secure Socket Layer in the Network and Web Security

Authors: Roza Dastres, Mohsen Soori

Abstract:

In order to electronically exchange information between network users in the web of data, different software such as outlook is presented. So, the traffic of users on a site or even the floors of a building can be decreased as a result of applying a secure and reliable data sharing software. It is essential to provide a fast, secure and reliable network system in the data sharing webs to create an advanced communication systems in the users of network. In the present research work, different encoding methods and algorithms in data sharing systems is studied in order to increase security of data sharing systems by preventing the access of hackers to the transferred data. To increase security in the networks, the possibility of textual conversation between customers of a local network is studied. Application of the encryption and decryption algorithms is studied in order to increase security in networks by preventing hackers from infiltrating. As a result, a reliable and secure communication system between members of a network can be provided by preventing additional traffic in the website environment in order to increase speed, accuracy and security in the network and web systems of data sharing.

Keywords: Secure Socket Layer, Security of networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
1128 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
1127 Free and Open Source Licences, Software Programmers, and the Social Norm of Reciprocity

Authors: Luke McDonagh

Abstract:

Over the past three decades, free and open source software (FOSS) programmers have developed new, innovative and legally binding licences that have in turn enabled the creation of innumerable pieces of everyday software, including Linux, Mozilla Firefox and Open Office. That FOSS has been highly successful in competing with 'closed source software' (e.g. Microsoft Office) is now undeniable, but in noting this success, it is important to examine in detail why this system of FOSS has been so successful. One key reason is the existence of networks or communities of programmers, who are bound together by a key shared social norm of 'reciprocity'. At the same time, these FOSS networks are not unitary – they are highly diverse and there are large divergences of opinion between members regarding which licences are generally preferable: some members favour the flexible ‘free’ or 'no copyleft' licences, such as BSD and MIT, while other members favour the ‘strong open’ or 'strong copyleft' licences such as GPL. This paper argues that without both the existence of the shared norm of reciprocity and the diversity of licences, it is unlikely that the innovative legal framework provided by FOSS would have succeeded to the extent that it has.

Keywords: Open source, software, licences, reciprocity, networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1126 The Possibility to Resolve the Security Problems through the LTE in Vehicular Ad-hoc Networks

Authors: Sun-Hee Han, Hun-Jung Lim, Tai-Myoung Chung

Abstract:

Vehicular Ad-Hoc Networks (VANET) can provide communications between vehicles or infrastructures. It provides the convenience of driving and the secure driving to reduce accidents. In VANET, the security is more important because it is closely related to accidents. Additionally, VANET raises a privacy issue because it can track the location of vehicles and users- identity when a security mechanism is provided. In this paper, we analyze the problem of an existing solution for security requirements required in VANET, and resolve the problem of the existing method when a key management mechanism is provided for the security operation in VANET. Therefore, we show suitability of the Long Term Evolution (LTE) in VANET for the solution of this problem.

Keywords: VANET, Privacy, Security, LTE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
1125 A Reliable Secure Multicast Key Distribution Scheme for Mobile Adhoc Networks

Authors: D. SuganyaDevi, G. Padmavathi

Abstract:

Reliable secure multicast communication in mobile adhoc networks is challenging due to its inherent characteristics of infrastructure-less architecture with lack of central authority, high packet loss rates and limited resources such as bandwidth, time and power. Many emerging commercial and military applications require secure multicast communication in adhoc environments. Hence key management is the fundamental challenge in achieving reliable secure communication using multicast key distribution for mobile adhoc networks. Thus in designing a reliable multicast key distribution scheme, reliability and congestion control over throughput are essential components. This paper proposes and evaluates the performance of an enhanced optimized multicast cluster tree algorithm with destination sequenced distance vector routing protocol to provide reliable multicast key distribution. Simulation results in NS2 accurately predict the performance of proposed scheme in terms of key delivery ratio and packet loss rate under varying network conditions. This proposed scheme achieves reliability, while exhibiting low packet loss rate with high key delivery ratio compared with the existing scheme.

Keywords: Key Distribution, Mobile Adhoc Network, Multicast and Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1124 Performance Evaluation of Single-mode and Multimode Fiber in LAN Environment

Authors: Farah Diyana Abdul Rahman, Wajdi Al-Khateeb, Aisha Hassan Abdalla Hashim

Abstract:

Optical networks are high capacity networks that meet the rapidly growing demand for bandwidth in the terrestrial telecommunications industry. This paper studies and evaluates singlemode and multimode fiber transmission by varying the distance. It focuses on their performance in LAN environment. This is achieved by observing the pulse spreading and attenuation in optical spectrum and eye-diagram that are obtained using OptSim simulator. The behaviors of two modes with different distance of data transmission are studied, evaluated and compared.

Keywords: Attenuation, eye diagram, fiber transmissions, multimode fiber, pulse dispersion, OSNR, single-mode fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
1123 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
1122 Capacity Enhancement in Wireless Networks using Directional Antennas

Authors: Sedat Atmaca, Celal Ceken, Ismail Erturk

Abstract:

One of the biggest drawbacks of the wireless environment is the limited bandwidth. However, the users sharing this limited bandwidth have been increasing considerably. SDMA technique which entails using directional antennas allows to increase the capacity of a wireless network by separating users in the medium. In this paper, it has been presented how the capacity can be enhanced while the mean delay is reduced by using directional antennas in wireless networks employing TDMA/FDD MAC. Computer modeling and simulation of the wireless system studied are realized using OPNET Modeler. Preliminary simulation results are presented and the performance of the model using directional antennas is evaluated and compared consistently with the one using omnidirectional antennas.

Keywords: Directional Antenna, TDMA, SDMA,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
1121 Networks in the Tourism Sector in Brazil: Proposal of a Management Model Applied to Tourism Clusters

Authors: Gysele Lima Ricci, Jose Miguel Rodriguez Anton

Abstract:

Companies in the tourism sector need to achieve competitive advantages for their survival in the market. In this way, the models based on association, cooperation, complementarity, distribution, exchange and mutual assistance arise as a possibility of organizational development, taking as reference the concept of networks. Many companies seek to partner in local networks as clusters to act together and associate. The main objective of the present research is to identify the specificities of management and the practices of cooperation in the tourist destination of São Paulo - Brazil, and to propose a new management model with possible cluster of tourism. The empirical analysis was carried out in three phases. As a first phase, a research was made by the companies, associations and tourism organizations existing in São Paulo, analyzing the characteristics of their business. In the second phase, the management specificities and cooperation practice used in the tourist destination. And in the third phase, identifying the possible strengths and weaknesses that potential or potential tourist cluster could have, proposing the development of the management model of the same adapted to the needs of the companies, associations and organizations. As a main result, it has been identified that companies, associations and organizations could be looking for synergies with each other and collaborate through a Hiperred organizational structure, in which they share their knowledge, try to make the most of the collaboration and to benefit from three concepts: flexibility, learning and collaboration. Finally, it is concluded that, the proposed tourism cluster management model is viable for the development of tourism destinations because it makes it possible to strategically address agents which are responsible for public policies, as well as public and private companies and organizations in their strategies competitiveness and cooperation.

Keywords: Cluster, management model, networks, tourism sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
1120 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
1119 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN

Authors: K.Gayathri, N. Kumarappan

Abstract:

An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.

Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
1118 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: Landslide, limit analysis, ANN, soil properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
1117 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels along the Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future  storms and hurricanes on coastal communities. Accurate sea level  change prediction and supplement is an important task in determining  constructions and human activities in coastal and oceanic areas. In  this study, support vector machines (SVM) is proposed to predict  daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal  parameter values of kernel function are determined using a genetic  algorithm. The SVM results are compared with the field data and  with back propagation (BP). Among the models, the SVM is superior  to BPNN and has better generalization performance.

 

Keywords: Tides, Prediction, Support Vector Machines, Genetic Algorithm, Back-Propagation Neural Network, Risk, Hazards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1116 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.

Keywords: Energy efficiency, game theory, handover, HetNets, small cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
1115 Health Risk Assessment for Sewer Workers using Bayesian Belief Networks

Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang

Abstract:

The sanitary sewerage connection rate becomes an important indicator of advanced cities. Following the construction of sanitary sewerages, the maintenance and management systems are required for keeping pipelines and facilities functioning well. These maintenance tasks often require sewer workers to enter the manholes and the pipelines, which are confined spaces short of natural ventilation and full of hazardous substances. Working in sewers could be easily exposed to a risk of adverse health effects. This paper proposes the use of Bayesian belief networks (BBN) as a higher level of noncarcinogenic health risk assessment of sewer workers. On the basis of the epidemiological studies, the actual hospital attendance records and expert experiences, the BBN is capable of capturing the probabilistic relationships between the hazardous substances in sewers and their adverse health effects, and accordingly inferring the morbidity and mortality of the adverse health effects. The provision of the morbidity and mortality rates of the related diseases is more informative and can alleviate the drawbacks of conventional methods.

Keywords: Bayesian belief networks, sanitary sewerage, healthrisk assessment, hazard quotient, target organ-specific hazard index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1114 A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks

Authors: Ankit Agrawal, Ankush Mittal

Abstract:

A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance.

Keywords: Activators, correlation, dynamic time-lagged correlation based method, inhibitors, multi-time delay gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
1113 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
1112 DEA ANN Approach in Supplier Evaluation System

Authors: Dilek Özdemir, Gül Tekin Temur

Abstract:

In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.

Keywords: Artificial Neural Network (ANN), DataEnvelopment Analysis (DEA), Supplier Evaluation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
1111 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach

Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li

Abstract:

Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.

Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
1110 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks

Authors: M.K.Jeya Kumar

Abstract:

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1109 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: Crime prediction, machine learning, public safety, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
1108 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
1107 Harmony Search-based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), Harmony Search Algorithms, K-Coverage, Mobile WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165