Search results for: gate diffusion input
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1837

Search results for: gate diffusion input

577 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
576 Comparison of Zero Voltage Soft Switching and Hard Switching Boost Converter with Maximum Power Point Tracking

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).

Keywords: Boost converter, duty cycle, hard switching, MOSFET, maximum power point tracking, photovoltaic, soft switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
575 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
574 Adaptability of ‘Monti Dauni’ Bean Ecotypes in Plain Areas

Authors: Disciglio G., Nardella E., Gatta G., Giuliani M.M., Tarantino A.

Abstract:

The bean (Phaseolus vulgaris L.) is one of the best known of the legumes, and it has a long cultivation tradition in Italy. The territory of “Subappennino Dauno” (southern Italy) is at around 700 m a.s.l. and is predominantly grown with cereals, olive trees and grapevines. Ecotypes of white beans to eat dry (such as cannellini beans) are also grown, which are sought for their palatability, high digestibility, and ease of cooking. However, these are not easy to find on the market due to their low production in relatively small areas and on small family farms that use seeds handed down from generation to generation. The introduction of these ecotypes in plain areas of the Puglia region would provide an opportunity to promote the diffusion of this type of bean. To investigate the adaptability of these ecotypes in plain environments (Cerignola, in southern Italy) a comparative trial was carried out between three ‘Monti Dauni’ ecotypes (E1, E2, E3) that are native to mountain areas and the similar commercial variety, ‘Cannellini’. The data provide useful information about the quantitative and qualitative characteristics of these ecotypes when grown in lowland environments. Ecotype E3 provided the greatest bean production (2.34 t ha-1) compared to ‘Cannellini’ (1.28 t ha-1) and the other ecotypes (0.55 and 0.40 t ha-1, for E1 and E2, respectively), due to its greater plant growth and the larger size of the seed (and thickness, in particular). Finally, ecotype E2 provided the greatest protein content (31.2%), although not significantly different from the commercial cultivar ‘Cannellini’ (32.1%).

Keywords: 'Monti Dauni' bean, ecotypes, adaptability in plain areas, quali-quantitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
573 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction

Authors: Ε. Giovanis

Abstract:

In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.

Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
572 Pattern Recognition as an Internalized Motor Programme

Authors: M. Jändel

Abstract:

A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.

Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
571 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
570 Application of Whole Genome Amplification Technique for Genotype Analysis of Bovine Embryos

Authors: S. Moghaddaszadeh-Ahrabi, S. Farajnia, Gh. Rahimi-Mianji, A. Nejati-Javaremi

Abstract:

In recent years, there has been an increasing interest toward the use of bovine genotyped embryos for commercial embryo transfer programs. Biopsy of a few cells in morulla stage is essential for preimplantation genetic diagnosis (PGD). Low amount of DNA have limited performing the several molecular analyses within PGD analyses. Whole genome amplification (WGA) promises to eliminate this problem. We evaluated the possibility and performance of an improved primer extension preamplification (I-PEP) method with a range of starting bovine genomic DNA from 1-8 cells into the WGA reaction. We optimized a short and simple I-PEP (ssI-PEP) procedure (~3h). This optimized WGA method was assessed by 6 loci specific polymerase chain reactions (PCRs), included restriction fragments length polymorphism (RFLP). Optimized WGA procedure possesses enough sensitivity for molecular genetic analyses through the few input cells. This is a new era for generating characterized bovine embryos in preimplantation stage.

Keywords: Whole genome amplification (WGA), Genotyping, Bovine, Preimplantation genetic diagnosis (PGD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
569 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
568 Piezoelectric Transducer Modeling: with System Identification (SI) Method

Authors: Nora Taghavi, Ali Sadr

Abstract:

System identification is the process of creating models of dynamic process from input- output signals. The aim of system identification can be identified as “ to find a model with adjustable parameters and then to adjust them so that the predicted output matches the measured output". This paper presents a method of modeling and simulating with system identification to achieve the maximum fitness for transformation function. First by using optimized KLM equivalent circuit for PVDF piezoelectric transducer and assuming different inputs including: sinuside, step and sum of sinusides, get the outputs, then by using system identification toolbox in MATLAB, we estimate the transformation function from inputs and outputs resulted in last program. Then compare the fitness of transformation function resulted from using ARX,OE(Output- Error) and BJ(Box-Jenkins) models in system identification toolbox and primary transformation function form KLM equivalent circuit.

Keywords: PVDF modeling, ARX, BJ(Box-Jenkins), OE(Output-Error), System Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2747
567 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: Frame, grey wolf optimization algorithm, modal residual force, structural damage detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
566 Analysis of Transmedia Storytelling in Pokémon GO

Authors: Iva Nedelcheva

Abstract:

This study is part of a doctoral thesis on the topic of Hyperfiction: Past, Present and Future of Storytelling through Hypertext. It explores in depth the impact of transmedia storytelling and the role of hypertext in the realm of the currently popular social media phenomenon Pokémon GO. Storytelling is a powerful method to engage and unite people. Moreover, the technology progress adds a whole new angle to the method, with hypertext and cross-platform sharing that enhance the traditional storytelling so much that transmedia storytelling gives unlimited opportunities to affect the everyday life of people across the globe. This research aims at examining the transmedia storytelling approach in Pokémon GO, and explaining how that contributed to its establishment as a massive worldwide hit in less than a week. The social engagement is investigated in all major media platforms, including traditional and online media channels. Observation and content analyses are reported in this paper to form the conclusion that transmedia storytelling with the input of hypertext has a promising future as a method of establishing a productive and rewarding communication strategy.

Keywords: Communication, hypertext, Pokémon GO, storytelling, transmedia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3874
565 Third Order Current-mode Quadrature Sinusoidal Oscillator with High Output Impedances

Authors: Kritphon Phanruttanachai, Winai Jaikla

Abstract:

This article presents a current-mode quadrature oscillator using differential different current conveyor (DDCC) and voltage differencing transconductance amplifier (VDTA) as active elements. The proposed circuit is realized fro m a non-inverting lossless integrator and an inverting second order low-pass filter. The oscillation condition and oscillation frequency can be electronically/orthogonally controlled via input bias currents. The circuit description is very simple, consisting of merely 1 DDCC, 1 VDTA, 1 grounded resistor and 3 grounded capacitors. Using only grounded elements, the proposed circuit is then suitable for IC architecture. The proposed oscillator has high output impedance which is easy to cascade or dive the external load without the buffer devices. The PSPICE simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.76mW at ±1.25V supply voltages.

Keywords: Current-mode, oscillator, integrated circuit, DDCC, VDTA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
564 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

Authors: H.Mohammadi Majd, M.Jalali Azizpour

Abstract:

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
563 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: Feature recognition, automation, sheet metal manufacturing, CAM, CAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
562 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm

Authors: G. Bhushan, S. Dhingra, K. K. Dubey

Abstract:

This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.

Keywords: Karanja biodiesel, single cylinder direct injection diesel engine, response surface methodology, central composite rotatable design, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
561 Intelligent Control and Modelling of a Micro Robot for In-pipe Application

Authors: Y. Sabzehmeidani, M. Mailah, M. Hussein, A. R. Tavakolpour

Abstract:

In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.

Keywords: Active Force Control, Micro Robot, Fuzzy Logic, In-pipe Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
560 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
559 Program Camouflage: A Systematic Instruction Hiding Method for Protecting Secrets

Authors: Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, Ken-ichi Matsumoto

Abstract:

This paper proposes an easy-to-use instruction hiding method to protect software from malicious reverse engineering attacks. Given a source program (original) to be protected, the proposed method (1) takes its modified version (fake) as an input, (2) differences in assembly code instructions between original and fake are analyzed, and, (3) self-modification routines are introduced so that fake instructions become correct (i.e., original instructions) before they are executed and that they go back to fake ones after they are executed. The proposed method can add a certain amount of security to a program since the fake instructions in the resultant program confuse attackers and it requires significant effort to discover and remove all the fake instructions and self-modification routines. Also, this method is easy to use (with little effort) because all a user (who uses the proposed method) has to do is to prepare a fake source code by modifying the original source code.

Keywords: Copyright protection, program encryption, program obfuscation, self-modification, software protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
558 Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel

Authors: Wei Zhang, Su-Yan Tang, Yi-Fan Zhu, Wei-Ping Wang

Abstract:

Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.

Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
557 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: Thermoregulation, phase change materials, microencapsulation, thermal energy storage, nanoencapsulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
556 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis

Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar

Abstract:

In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.

Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
555 Using RASCAL and ALOHA Codes to Establish an Analysis Methodology for Hydrogen Fluoride Evaluation

Authors: J. R. Wang, Y. Chiang, W. S. Hsu, H. C. Chen, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih

Abstract:

In this study, the RASCAL and ALOHA codes are used to establish an analysis methodology for hydrogen fluoride (HF) evaluation. There are three main steps in this study. First, the UF6 data were collected. Second, one postulated case was analyzed by using the RASCAL and UF6 data. This postulated case assumes that fire occurring and UF6 is releasing from a building. Third, the results of RASCAL for HF mass were as the input data of ALOHA. Two postulated cases of HF were analyzed by using ALOHA code and the results of RASCAL. These postulated cases assume fire occurring and HF is releasing with no raining (Case 1) or raining (Case 2) condition. According to the analysis results of ALOHA, the HF concentration of Case 2 is smaller than Case 1. The results can be a reference for the preparing of emergency plans for the release of HF.

Keywords: RASCAL, ALOHA, UF6, hydrogen fluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
554 Robotics System Design for Assembly and Disassembly Process

Authors: Nina Danišová, Roman Ružarovský, Karol Velíšek

Abstract:

In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.

Keywords: Cartesian robot, design methodology, assembly, disassembly, pneumatic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
553 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Authors: K.M. Faraoun, A. Boukelif

Abstract:

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Keywords: Genetic programming, patterns classification, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
552 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of across section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: Robot hand, Underactuated mechanism, Cross section deformation spring, Prosthetic hand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
551 Coreless Printed Circuit Board (PCB) Stepdown Transformers for DC-DC Converter Applications

Authors: Radhika Ambatipudi, Hari Babu Kotte, Dr. Kent Bertilsson

Abstract:

In this paper, multilayered coreless printed circuit board (PCB) step-down power transformers for DC-DC converter applications have been designed, manufactured and evaluated. A set of two different circular spiral step-down transformers were fabricated in the four layered PCB. These transformers have been modelled with the assistance of high frequency equivalent circuit and characterized with both sinusoidal and square wave excitation. This paper provides the comparative results of these two different transformers in terms of their resistances, self, leakage, mutual inductances, coupling coefficient and also their energy efficiencies. The operating regions for optimal performance of these transformers for power transfer applications are determined. These transformers were tested for the output power levels of about 30 Watts within the input voltage range of 12-50 Vrms. The energy efficiency for these step down transformers is observed to be in the range of 90%-97% in MHz frequency region.

Keywords: Coreless Step down Transformer, DC-DC Converterapplications, High frequency transformer, MHz operating frequency, Multilayered PCB transformers, Power Transfer Applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4840
550 A Survey of Business Component Identification Methods and Related Techniques

Authors: Zhongjie Wang, Xiaofei Xu, Dechen Zhan

Abstract:

With deep development of software reuse, componentrelated technologies have been widely applied in the development of large-scale complex applications. Component identification (CI) is one of the primary research problems in software reuse, by analyzing domain business models to get a set of business components with high reuse value and good reuse performance to support effective reuse. Based on the concept and classification of CI, its technical stack is briefly discussed from four views, i.e., form of input business models, identification goals, identification strategies, and identification process. Then various CI methods presented in literatures are classified into four types, i.e., domain analysis based methods, cohesion-coupling based clustering methods, CRUD matrix based methods, and other methods, with the comparisons between these methods for their advantages and disadvantages. Additionally, some insufficiencies of study on CI are discussed, and the causes are explained subsequently. Finally, it is concluded with some significantly promising tendency about research on this problem.

Keywords: Business component, component granularity, component identification, reuse performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
549 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
548 Design of a CMOS Highly Linear Front-end IC with Auto Gain Controller for a Magnetic Field Transceiver

Authors: Yeon-kug Moon, Kang-Yoon Lee, Yun-Jae Won, Seung-Ok Lim

Abstract:

This paper describes a low-voltage and low-power channel selection analog front end with continuous-time low pass filters and highly linear programmable gain amplifier (PGA). The filters were realized as balanced Gm-C biquadratic filters to achieve a low current consumption. High linearity and a constant wide bandwidth are achieved by using a new transconductance (Gm) cell. The PGA has a voltage gain varying from 0 to 65dB, while maintaining a constant bandwidth. A filter tuning circuit that requires an accurate time base but no external components is presented. With a 1-Vrms differential input and output, the filter achieves -85dB THD and a 78dB signal-to-noise ratio. Both the filter and PGA were implemented in a 0.18um 1P6M n-well CMOS process. They consume 3.2mW from a 1.8V power supply and occupy an area of 0.19mm2.

Keywords: component ; Channel selection filters, DC offset, programmable gain amplifier, tuning circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140