Search results for: content accuracy
2070 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17732069 Exploring Performance-Based Music Attributes for Stylometric Analysis
Authors: Abdellghani Bellaachia, Edward Jimenez
Abstract:
Music Information Retrieval (MIR) and modern data mining techniques are applied to identify style markers in midi music for stylometric analysis and author attribution. Over 100 attributes are extracted from a library of 2830 songs then mined using supervised learning data mining techniques. Two attributes are identified that provide high informational gain. These attributes are then used as style markers to predict authorship. Using these style markers the authors are able to correctly distinguish songs written by the Beatles from those that were not with a precision and accuracy of over 98 per cent. The identification of these style markers as well as the architecture for this research provides a foundation for future research in musical stylometry.
Keywords: Music Information Retrieval, Music Data Mining, Stylometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16802068 Reutilization of Organic and Peat Soils by Deep Cement Mixing
Authors: Bee-Lin Tang, Ismail Bakar, Chee - Ming Chan
Abstract:
Limited infrastructure development on peats and organic soils is a serious geotechnical issues common to many countries of the world especially Malaysia which distributed 1.5 mill ha of those problematic soil. These soils have high water content and organic content which exhibit different mechanical properties and may also change chemically and biologically with time. Constructing structures on peaty ground involves the risk of ground failure and extreme settlement. Nowdays, much efforts need to be done in making peatlands usable for construction due to increased landuse. Deep mixing method employing cement as binders, is generally used as measure again peaty/ organic ground failure problem. Where the technique is widely adopted because it can improved ground considerably in a short period of time. An understanding of geotechnical properties as shear strength, stiffness and compressibility behavior of these soils was requires before continues construction on it. Therefore, 1- 1.5 meter peat soil sample from states of Johor and an organic soil from Melaka, Malaysia were investigated. Cement were added to the soil in the pre-mixing stage with water cement ratio at range 3.5,7,14,140 for peats and 5,10,30 for organic soils, essentially to modify the original soil textures and properties. The mixtures which in slurry form will pour to polyvinyl chloride (pvc) tube and cured at room temperature 250C for 7,14 and 28 days. Laboratory experiments were conducted including unconfined compressive strength and bender element , to monitor the improved strength and stiffness of the 'stabilised mixed soils'. In between, scanning electron miscroscopic (SEM) were observations to investigate changes in microstructures of stabilised soils and to evaluated hardening effect of a peat and organic soils stabilised cement. This preliminary effort indicated that pre-mixing peat and organic soils contributes in gaining soil strength while help the engineers to establish a new method for those problematic ground improvement in further practical and long term applications.Keywords: peat soils, organic soils, cement stabilisation, strength, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32622067 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation
Authors: Marzieh Dosti, Alireza Nazemi
Abstract:
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.
Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17972066 Basket Option Pricing under Jump Diffusion Models
Authors: Ali Safdari-Vaighani
Abstract:
Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.Keywords: Radial basis function, basket option, jump diffusion, RBF-PUM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12082065 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations
Authors: N. Ebrahimi, J. Rashidinia
Abstract:
In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.
Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21992064 Study of Syntactic Errors for Deep Parsing at Machine Translation
Authors: Yukiko Sasaki Alam, Shahid Alam
Abstract:
Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.
Keywords: Machine translation, error analysis, syntactic errors, knowledge required for parsing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12472063 Evaluation of Protein Digestibility in Canola Meals between Caecectomised and Intact Adult Cockerels
Authors: Ali Nouri Emamzadeh, Akbar Yaghobfar
Abstract:
The experiment was conducted to evaluate digestibility quantities of protein in Canola Meals (CMs) between caecectomised and intact adult Rhode Island Red (RIR) cockerels with using conventional addition method (CAM) for 7 d: a 4-d adaptation and a 3-d experiment period on the basis of a completely randomized design with 4 replicates. Results indicated that caecectomy decreased (P<0.05) apparent and true digestibility quantities of protein for CMs, except for CMs 2 and 3. The mean apparent and true digestibility quantities for all CMs in caecectomised (80.5 and 81.4%, respectively) were (3.1 and 3.3%, respectively) less (P<0.05) than intact cockerels (83.6 and 84.7%, respectively). Therefore, the caecectomy method increases accuracy of the digestibility measurements of protein for this meal in bioassays based on excreta collection in adult cockerels.Keywords: Adult cockerels, caecectomy, canola meals, proteindigestibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18262062 Novel GPU Approach in Predicting the Directional Trend of the S&P 500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-ofsample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.
Keywords: Financial algorithm, GPU, S&P 500, stock market prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17362061 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15702060 Multi-Context Recurrent Neural Network for Time Series Applications
Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi
Abstract:
this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.
Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30452059 Effects of Reversible Watermarking on Iris Recognition Performance
Authors: Andrew Lock, Alastair Allen
Abstract:
Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance ofinvestigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.
Keywords: Biometrics, iris recognition, reversible watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24032058 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal
Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.Keywords: Alternative ironmaking, coal devolatisation, extent of reduction, nugget making, syngas based DRI, solid state reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14872057 Urdu Nastaleeq Optical Character Recognition
Authors: Zaheer Ahmad, Jehanzeb Khan Orakzai, Inam Shamsher, Awais Adnan
Abstract:
This paper discusses the Urdu script characteristics, Urdu Nastaleeq and a simple but a novel and robust technique to recognize the printed Urdu script without a lexicon. Urdu being a family of Arabic script is cursive and complex script in its nature, the main complexity of Urdu compound/connected text is not its connections but the forms/shapes the characters change when it is placed at initial, middle or at the end of a word. The characters recognition technique presented here is using the inherited complexity of Urdu script to solve the problem. A word is scanned and analyzed for the level of its complexity, the point where the level of complexity changes is marked for a character, segmented and feeded to Neural Networks. A prototype of the system has been tested on Urdu text and currently achieves 93.4% accuracy on the average.Keywords: Cursive Script, OCR, Urdu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27782056 Moisture Diffusivity of AAC with Different Densities
Authors: Tomáš Korecký, Kamil Ďurana, Miroslava Lapková, Robert Černý
Abstract:
Method of determining of moisture diffusivity on two types of autoclaved aerated concretes with different bulk density is represented in the paper. On the specimens were measured one dimensional water transport only on liquid phase. Ever evaluation was done from moisture profiles measured in specific times by capacitance moisture meter. All values from capacitance meter were recalculated to moisture content by mass. Moisture diffusivity was determined in dependence on both moisture and temperature. The experiment temperatures were set at values 55, 65, 75 and 85°C.
Keywords: moisture diffusivity, autoclaved aerated concrete, capacitance moisture meter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18302055 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.
Keywords: Stability, Functionally graded beam, First order shear deformation theory, Piezoelectric layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722054 Optimal Conditions for Carotenoid Production and Antioxidation Characteristics by Rhodotorula rubra
Authors: N. Chanchay, S. Sirisansaneeyakul, C. Chaiyasut, N. Poosaran
Abstract:
This study aims to screen out and to optimize the major nutrients for maximum carotenoid production and antioxidation characteristics by Rhodotorula rubra. It was found that supplementary of 10 g/l glucose as carbon source, 1 g/l ammonium sulfate as nitrogen source and 1 g/l yeast extract as growth factor in the medium provided the better yield of carotenoid content of 30.39 μg/g cell dry weight the amount of antioxidation of Rhodotorula rubra by DPPH, ABTS and MDA method were 1.463%, 34.21% and 34.09 μmol/l, respectively.Keywords: Carotenoid, Rhodotorula rubra, Antioxidation, DPPH, ABTS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29412053 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.
Keywords: Deep learning, skin cancer, image processing, melanoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15422052 Competitiveness of Animation Industry: The Case of Thailand
Authors: T. Niracharapa
Abstract:
The research studied and examined the competitiveness of the animation industry in Thailand. Data were collected based on articles, related reports and websites, news, research, and interviews of key persons from both public and private sectors. The diamond model was used to analyze the study. The major factor driving the Thai animation industry forward includes a quality workforce, their creativity and strong associations. However, discontinuity in government support, infrastructure, marketing, IP creation and financial constraints were factors keeping the Thai animation industry less competitive in the global market.
Keywords: Animation, competitiveness, digital content, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47352051 Application of Scanning Electron Microscopy and X-Ray Evaluation of the Main Digestion Methods for Determination of Macroelements in Plant Tissue
Authors: Krasimir I. Ivanov, Penka S. Zapryanova, Stefan V. Krustev, Violina R. Angelova
Abstract:
Three commonly used digestion methods (dry ashing, acid digestion, and microwave digestion) in different variants were compared for digestion of tobacco leaves. Three main macroelements (K, Ca and Mg) were analysed using AAS Spectrometer Spectra АА 220, Varian, Australia. The accuracy and precision of the measurements were evaluated by using Polish reference material CTR-VTL-2 (Virginia tobacco leaves). To elucidate the problems with elemental recovery X-Ray and SEM–EDS analysis of all residues after digestion were performed. The X-ray investigation showed a formation of KClO4 when HClO4 was used as a part of the acids mixture. The use of HF at Ca and Mg determination led to the formation of CaF2 and MgF2. The results were confirmed by energy dispersive X-ray microanalysis. SPSS program for Windows was used for statistical data processing.
Keywords: Digestion methods, determination of macroelements, plant tissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9402050 Design of Multi-disease Diagnosis Processor using Hypernetworks Technique
Authors: Jae-Yeon Song, Seung-Yerl Lee, Kyu-Yeul Wang, Byung-Soo Kim, Sang-Seol Lee, Seong-Seob Shin, Jae-Young Choi, Chong Ho Lee, Jeahyun Park, Duck-Jin Chung
Abstract:
In this paper, we propose disease diagnosis hardware architecture by using Hypernetworks technique. It can be used to diagnose 3 different diseases (SPECT Heart, Leukemia, Prostate cancer). Generally, the disparate diseases require specified diagnosis hardware model for each disease. Using similarities of three diseases diagnosis processor, we design diagnosis processor that can diagnose three different diseases. Our proposed architecture that is combining three processors to one processor can reduce hardware size without decrease of the accuracy.Keywords: Diagnosis processor, Hypernetworks, Leukemia, Mask, Prostate cancer, SPECT Heart data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13632049 Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira
Abstract:
In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15872048 Edge Segmentation of Satellite Image using Phase Congruency Model
Authors: Ahmed Zaafouri, Mounir Sayadi, Farhat Fnaiech
Abstract:
In this paper, we present a method for edge segmentation of satellite images based on 2-D Phase Congruency (PC) model. The proposed approach is composed by two steps: The contextual non linear smoothing algorithm (CNLS) is used to smooth the input images. Then, the 2D stretched Gabor filter (S-G filter) based on proposed angular variation is developed in order to avoid the multiple responses in the previous work. An assessment of our proposed method performance is provided in terms of accuracy of satellite image edge segmentation. The proposed method is compared with others known approaches.Keywords: Edge segmentation, Phase congruency model, Satellite images, Stretched Gabor filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26672047 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles
Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou
Abstract:
The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.
Keywords: Fault detection, feature selection, machine learning, predictive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7812046 A Finite Point Method Based on Directional Derivatives for Diffusion Equation
Authors: Guixia Lv, Longjun Shen
Abstract:
This paper presents a finite point method based on directional derivatives for diffusion equation on 2D scattered points. To discretize the diffusion operator at a given point, a six-point stencil is derived by employing explicit numerical formulae of directional derivatives, namely, for the point under consideration, only five neighbor points are involved, the number of which is the smallest for discretizing diffusion operator with first-order accuracy. A method for selecting neighbor point set is proposed, which satisfies the solvability condition of numerical derivatives. Some numerical examples are performed to show the good performance of the proposed method.Keywords: Finite point method, directional derivatives, diffusionequation, method for selecting neighbor point set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13522045 Is E-learning Based On Learning Theories? A Literature Review
Authors: Apostolia Pange, Jenny Pange
Abstract:
E-learning aims to build knowledge and skills in order to enhance the quality of learning. Research has shown that the majority of the e-learning solutions lack in pedagogical background and present some serious deficiencies regarding teaching strategies and content delivery, time and pace management, interface design and preservation of learners- focus. The aim of this review is to approach the design of e-learning solutions with a pedagogical perspective and to present some good practices of e-learning design grounded on the core principles of Learning Theories (LTs).Keywords: design principles, e-learning, Learning Theories
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52292044 Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis
Authors: Wang Chengcheng, Li Chuanri, Xu Fei, Guo Ying
Abstract:
Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.
Keywords: Random vibration, finite element simulation, fatigue, frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47102043 Simultaneous Segmentation and Recognition of Arabic Characters in an Unconstrained On-Line Cursive Handwritten Document
Authors: Randa I. Elanwar, Mohsen A. Rashwan, Samia A. Mashali
Abstract:
The last two decades witnessed some advances in the development of an Arabic character recognition (CR) system. Arabic CR faces technical problems not encountered in any other language that make Arabic CR systems achieve relatively low accuracy and retards establishing them as market products. We propose the basic stages towards a system that attacks the problem of recognizing online Arabic cursive handwriting. Rule-based methods are used to perform simultaneous segmentation and recognition of word portions in an unconstrained cursively handwritten document using dynamic programming. The output of these stages is in the form of a ranked list of the possible decisions. A new technique for text line separation is also used.
Keywords: Arabic handwriting, character recognition, cursive handwriting, on-line recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19012042 Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions
Authors: Ekin Kıpçak, Mesut Akgün
Abstract:
Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water.
Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation.
In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production.
The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.
Keywords: Catalyst, Gasification, Olive mill wastewater, Ru/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22792041 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation
Authors: Mohammad Javadi
Abstract:
Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.
Keywords: Brain segmentation, DTI, hierarchical, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856