Search results for: Wireless Power Transmission (WPT)
2753 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.
Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24142752 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor
Authors: Jan Doutreloigne
Abstract:
The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.
Keywords: Audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8732751 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components
Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla
Abstract:
As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26652750 A Profit-Based Maintenance Scheduling of Thermal Power Units in Electricity Market
Authors: Smajo Bisanovic, Mensur Hajro, Muris Dlakic
Abstract:
This paper presents one comprehensive modelling approach for maintenance scheduling problem of thermal power units in competitive market. This problem is formulated as a 0/1 mixedinteger linear programming model. Model incorporates long-term bilateral contracts with defined profiles of power and price, and weekly forecasted market prices for market auction. The effectiveness of the proposed model is demonstrated through case study with detailed discussion.
Keywords: Maintenance scheduling, bilateral contracts, market prices, profit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16192749 ROI Based Embedded Watermarking of Medical Images for Secured Communication in Telemedicine
Authors: Baisa L. Gunjal, Suresh N. Mali
Abstract:
Medical images require special safety and confidentiality because critical judgment is done on the information provided by medical images. Transmission of medical image via internet or mobile phones demands strong security and copyright protection in telemedicine applications. Here, highly secured and robust watermarking technique is proposed for transmission of image data via internet and mobile phones. The Region of Interest (ROI) and Non Region of Interest (RONI) of medical image are separated. Only RONI is used for watermark embedding. This technique results in exact recovery of watermark with standard medical database images of size 512x512, giving 'correlation factor' equals to 1. The correlation factor for different attacks like noise addition, filtering, rotation and compression ranges from 0.90 to 0.95. The PSNR with weighting factor 0.02 is up to 48.53 dBs. The presented scheme is non blind and embeds hospital logo of 64x64 size.
Keywords: Compression, DWT, ROI, Scrambling, Vertices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32892748 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.
Keywords: Power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7752747 Attenuation in Transferred RF Power to a Biomedical Implant due to the Misalignment Coils
Authors: Batel Noureddine, Mehenni Mohamed, Dekar Lies
Abstract:
In biomedical implant field, a new formula is given for the study of Radio Frequency power attenuation by simultaneous effects of side and angular misalignment of the supply/data transfer coils. A confrontation with the practical measurements done into a Faraday cage, allowed a checking of the obtained theoretical results. The DC supply systems without material connection and the data transmitters used in the case of biomedical implants, can be well dimensioned by taking into account the possibility of power attenuation by misalignment of transfer coilsKeywords: Biomedical implant field, misalignment coils, powerattenuation, transmitter and receiver coils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16982746 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.
Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21592745 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources
Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov
Abstract:
The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.Keywords: Cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12352744 A Low-Cost Air Quality Monitoring Internet of Things Platform
Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis
Abstract:
In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.Keywords: Distributed sensor system, environmental monitoring, Internet of Things, IoT, Smart Cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8362743 DPSO Based SEPIC Converter in PV System under Partial Shading Condition
Authors: K. Divya, G. Sugumaran
Abstract:
This paper proposes an improved Maximum Power Point Tracking of PhotoVoltaic system using Deterministic Partical Swarm Optimization technique. This method has the ability to track the maximum power under varying environmental conditions i.e. partial shading conditions. The advantage of this method, particles moves in the restricted value of velocity to achieve the maximum power. SEPIC converter is employed to boost up the voltage of PV system. To estimate the value of the proposed method, MATLAB simulation carried out under partial shading condition.
Keywords: DPSO, Partial shading condition, P&O, PV, SEPIC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22822742 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method
Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela
Abstract:
This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.Keywords: Noise estimation, Non-stationary noise, Speechenhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23502741 Power System Damping Using Hierarchical Fuzzy Multi- Input PSS and Communication Lines Active Power Deviations Input and SVC
Authors: Mohammad Hasan Raouf, Ahmad Rouhani, Mohammad Abedini, Ebrahim Rasooli Anarmarzi
Abstract:
In this paper the application of a hierarchical fuzzy system (HFS) based on MPSS and SVC in multi-machine environment is studied. Also the effect of communication lines active power variance signal between two ΔPTie-line regions, as one of the inputs of hierarchical fuzzy multi-input PSS and SVC (HFMPSS & SVC), on the increase of low frequency oscillation damping is examined. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type PSS. The number of rules grows exponentially with the number of variables in a classic fuzzy system. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. Phasor model of SVC is described and used in this paper. The performances of MPSS and ΔPTie-line based HFMPSS and also the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. The efficiency of the proposed model is examined by simulating a four-machine power system. Results show that the proposed method is performing satisfactorily within the whole range of disturbances and reduces the cost of system.
Keywords: Communication lines active power variance signal, Hierarchical fuzzy system (HFS), Multi-input power system stabilizer (MPSS), Static VAR compensator (SVC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16792740 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17252739 Dynamic Bus Binding for Low Power Using Multiple Binding Tables
Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho
Abstract:
A conventional binding method for low power in a high-level synthesis mainly focuses on finding an optimal binding for an assumed input data, and obtains only one binding table. In this paper, we show that a binding method which uses multiple binding tables gets better solution compared with the conventional methods which use a single binding table, and propose a dynamic bus binding scheme for low power using multiple binding tables. The proposed method finds multiple binding tables for the proper partitions of an input data, and switches binding tables dynamically to produce the minimum total switching activity. Experimental result shows that the proposed method obtains a binding solution having 12.6-28.9% smaller total switching activity compared with the conventional methods.Keywords: low power, bus binding, switching activity, multiplebinding tables
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11902738 Assessment of Performance Measures of Large-Scale Power Systems
Authors: Mohamed A. El-Kady, Badr M. Alshammari
Abstract:
In a recent major industry-supported research and development study, a novel framework was developed and applied for assessment of reliability and quality performance levels in reallife power systems with practical large-scale sizes. The new assessment methodology is based on three metaphors (dimensions) representing the relationship between available generation capacities and required demand levels. The paper shares the results of the successfully completed stud and describes the implementation of the new methodology on practical zones in the Saudi electricity system.
Keywords: Power systems; large-scale analysis, reliability; performance assessment, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18562737 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.
Keywords: Circuit breaker, Condition base maintenance, Intelligent electronic device, Time base maintenance, SCADA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22942736 Observer Design for Chaos Synchronization of Time-delayed Power Systems
Authors: Jui-Sheng Lin, Yi-Sung Yang, Meei-Ling Hung, Teh-Lu Liao, Jun-Juh Yan
Abstract:
The global chaos synchronization for a class of time-delayed power systems is investigated via observer-based approach. By employing the concepts of quadratic stability theory and generalized system model, a new sufficient criterion for constructing an observer is deduced. In contrast to the previous works, this paper proposes a theoretical and systematic design procedure to realize chaos synchronization for master-slave power systems. Finally, an illustrative example is given to show the applicability of the obtained scheme.
Keywords: Chaos, Synchronization, Quadratic stability theory, Observer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17272735 Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines
Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita
Abstract:
The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.
Keywords: Combustion, Ericsson, thermodynamic analysis, turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24702734 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications
Authors: Nabil A. Ahmed
Abstract:
This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21842733 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34282732 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem
Authors: Adil AL-Rammahi
Abstract:
In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.
Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25032731 Fuzzy Logic Controlled Shunt Active Power Filter for Three-phase Four-wire Systems with Balanced and Unbalanced Loads
Authors: Ahmed A. Helal, Nahla E. Zakzouk, Yasser G. Desouky
Abstract:
This paper presents a fuzzy logic controlled shunt active power filter used to compensate for harmonic distortion in three-phase four-wire systems. The shunt active filter employs a simple method for the calculation of the reference compensation current based of Fast Fourier Transform. This presented filter is able to operate in both balanced and unbalanced load conditions. A fuzzy logic based current controller strategy is used to regulate the filter current and hence ensure harmonic free supply current. The validity of the presented approach in harmonic mitigation is verified via simulation results of the proposed test system under different loading conditions.Keywords: Active power filters, Fuzzy logic controller, Power quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20012730 Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels
Authors: Marwa Ben Abdessalem, Amin Zribi, Ammar Bouallègue
Abstract:
In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel.Keywords: AWGN channel, belief propagation, joint source channel coding, LDPC codes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9882729 Fuzzy Power Controller Design for Purdue University Research Reactor-1
Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.
Abstract:
The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.
Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4392728 Electrical Characteristics of SCR - based ESD Device for I/O and Power Rail Clamp in 0.35um Process
Authors: Yong Seo Koo, Dong Su Kim, Byung Seok Lee, Won Suk Park, Bo Bea Song
Abstract:
This paper presents a SCR-based ESD protection devices for I/O clamp and power rail clamp, respectably. These devices have a low trigger voltage and high holding voltage characteristics than conventional SCR device. These devices are fabricated by using 0.35um BCD (Bipolar-CMOS-DMOS) processes. These devices were validated using a TLP system. From the experimental results, the device for I/O ESD clamp has a trigger voltage of 5.8V. Also, the device for power rail ESD clamp has a holding voltage of 7.7V.
Keywords: ESD (Electro-Static Discharge), ESD protection device, SCR (Silicon Controlled Rectifier), Latch-up
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27812727 Evaluation on the Viability of Combined Heat and Power with Different Distributed Generation Technologies for Various Bindings in Japan
Authors: Yingjun Ruan, Qingrong Liu, Weiguo Zhou, Toshiyuki Watanabe
Abstract:
This paper has examined the energy consumption characteristics in six different buildings including apartments, offices, commercial buildings, hospitals, hotels and educational facilities. Then 5-hectare (50000m2) development site for respective building-s type has been assumed as case study to evaluate the introduction effect of Combined Heat and Power (CHP). All kinds of CHP systems with different distributed generation technologies including Gas Turbine (GT), Gas Engine (GE), Diesel Engine (DE), Solid Oxide Fuel Cell (SOFC) and Polymer Electrolyte Fuel Cell (PEFC), have been simulated by using HEATMAP, CHP system analysis software. And their primary energy utilization efficiency, energy saving ratio and CO2 reduction ratio have evaluated and compared respectively. The results can be summarized as follows: Various buildings have their special heat to power ratio characteristics. Matching the heat to power ratio demanded from an individual building with that supplied from a CHP system is very important. It is necessary to select a reasonable distributed generation technologies according to the load characteristics of various buildings. Distributed generation technologies with high energy generating efficiency and low heat to power ratio, like SOFC and PEFC is more reasonable selection for Building Combined Heat and Power (BCHP). CHP system is an attractive option for hotels, hospitals and apartments in Japan. The users can achieve high energy saving and environmental benefit by introducing a CHP systems. In others buildings, especially like commercial buildings and offices, the introduction of CHP system is unreasonable.
Keywords: Combined heat and power, distributed generation technologies, heat-tao-power ratio, energy saving ratio, CO2 reduction ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16602726 Generating High-Accuracy Tool Path for 5-axis Flank Milling of Globoidal Spatial Cam
Authors: Li Chen, ZhouLong Li, Qing-zhen Bi, LiMin Zhu
Abstract:
A new tool path planning method for 5-axis flank milling of a globoidal indexing cam is developed in this paper. The globoidal indexing cam is a practical transmission mechanism due to its high transmission speed, accuracy and dynamic performance. Machining the cam profile is a complex and precise task. The profile surface of the globoidal cam is generated by the conjugate contact motion of the roller. The generated complex profile surface is usually machined by 5-axis point-milling method. The point-milling method is time-consuming compared with flank milling. The tool path for 5-axis flank milling of globoidal cam is developed to improve the cutting efficiency. The flank milling tool path is globally optimized according to the minimum zone criterion, and high accuracy is guaranteed. The computational example and cutting simulation finally validate the developed method.Keywords: Globoidal cam, flank milling, LSQR, MINIMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22872725 Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling
Authors: Kyoung Hoon Kim
Abstract:
Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.Keywords: Water injection, wet compression, gas turbine, turbine blade cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34152724 Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique
Authors: R. Manjith, C. Muthukumari
Abstract:
In this paper, a novel Linear Feedback Shift Register (LFSR) with Look Ahead Clock Gating (LACG) technique is presented to reduce the power consumption in modern processors and System-on-Chip. Clock gating is a predominant technique used to reduce unwanted switching of clock signals. Several clock gating techniques to reduce the dynamic power have been developed, of which LACG is predominant. LACG computes the clock enabling signals of each flip-flop (FF) one cycle ahead of time, based on the present cycle data of the flip-flops on which it depends. It overcomes the timing problems in the existing clock gating methods like datadriven clock gating and Auto-Gated flip-flops (AGFF) by allotting a full clock cycle for the determination of the clock enabling signals. Further to reduce the power consumption in LACG technique, FFs can be grouped so that they share a common clock enabling signal. Simulation results show that the novel grouped LFSR with LACG achieves 15.03% power savings than conventional LFSR with LACG and 44.87% than data-driven clock gating.Keywords: AGFF, data-driven, LACG, LFSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749