Search results for: A complexity-based approach in image compression using neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8252

Search results for: A complexity-based approach in image compression using neural networks

6992 Dempster-Shafer Evidence Theory for Image Segmentation: Application in Cells Images

Authors: S. Ben Chaabane, M. Sayadi, F. Fnaiech, E. Brassart

Abstract:

In this paper we propose a new knowledge model using the Dempster-Shafer-s evidence theory for image segmentation and fusion. The proposed method is composed essentially of two steps. First, mass distributions in Dempster-Shafer theory are obtained from the membership degrees of each pixel covering the three image components (R, G and B). Each membership-s degree is determined by applying Fuzzy C-Means (FCM) clustering to the gray levels of the three images. Second, the fusion process consists in defining three discernment frames which are associated with the three images to be fused, and then combining them to form a new frame of discernment. The strategy used to define mass distributions in the combined framework is discussed in detail. The proposed fusion method is illustrated in the context of image segmentation. Experimental investigations and comparative studies with the other previous methods are carried out showing thus the robustness and superiority of the proposed method in terms of image segmentation.

Keywords: Fuzzy C-means, Color image, data fusion, Dempster-Shafer's evidence theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
6991 A Review of Methods for 2D/3D Registration

Authors: Panos D. Kotsas, Tony Dodd

Abstract:

2D/3D registration is a special case of medical image registration which is of particular interest to surgeons. Applications of 2D/3D registration are [1] radiotherapy planning and treatment verification, spinal surgery, hip replacement, neurointerventions and aortic stenting. The purpose of this paper is to provide a literature review of the main methods for image registration for the 2D/3D case. At the end of the paper an algorithm is proposed for 2D/3D registration based on the Chebyssev polynomials iteration loop.

Keywords: Medical image registration, review, 2D/3D

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2953
6990 Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans

Authors: Pei-Ju Chao, Tsair-Fwu Lee, Wei-Luen Huang, Long-Chang Chen, Te-Jen Su, Wen-Ping Chen

Abstract:

The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.

Keywords: neural network, dosimetric index, radiation treatment, tumor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
6989 A New Color Image Database for Benchmarking of Automatic Face Detection and Human Skin Segmentation Techniques

Authors: Abdallah S. Abdallah, Mohamad A bou El-Nasr, A. Lynn Abbott

Abstract:

This paper presents a new color face image database for benchmarking of automatic face detection algorithms and human skin segmentation techniques. It is named the VT-AAST image database, and is divided into four parts. Part one is a set of 286 color photographs that include a total of 1027 faces in the original format given by our digital cameras, offering a wide range of difference in orientation, pose, environment, illumination, facial expression and race. Part two contains the same set in a different file format. The third part is a set of corresponding image files that contain human colored skin regions resulting from a manual segmentation procedure. The fourth part of the database has the same regions converted into grayscale. The database is available on-line for noncommercial use. In this paper, descriptions of the database development, organization, format as well as information needed for benchmarking of algorithms are depicted in detail.

Keywords: Image database, color image analysis, facedetection, skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2597
6988 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
6987 Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala

Abstract:

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Keywords: Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3619
6986 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo

Abstract:

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.

Keywords: Neural networks, groundwater depth, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
6985 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression

Authors: Sito Ismanti, Noriyuki Yasufuku

Abstract:

Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.  

Keywords: Bamboo chips, permeability, mechanical properties, triaxial compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
6984 A Trace of Islamic Art in Thai Mosques

Authors: Pibool Waijittragum

Abstract:

The mosques have been appearance in Thailand since Ayutthaya Kingdom (1350 to 1767 A.D.) Until today, more than 400 years later; there are many styles of art form behind their structure. This research intended to identify Islamic Art in Thai mosques. A framework was applied using qualitative research methods; Thai Muslims with dynamic roles in Islamic culture were interviewed. In addition, a field survey of 40 selected mosques from 175 Thai mosques was studied. Data analysis will be according to the pattern of each period. The identification of Islamic Art in Thai Mosques are 1) the image of Thai identity: with Thai traditional art style and Government policy. 2) The image of the Ethnological identity: with the traditional culture of Asian Muslims in Thailand. 3) The image of the Nostalgia identity: with Islamic and Arabian conservative style. 4) The image of the Neo Classic identity: with Neo – Classic and Contemporary art. 5) The image of the new identity: with Post Modern and Deconstruction art.

Keywords: Islamic Art, Thai Mosques, Floral Arabesque, Geometric Form, Arabic Calligraphy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
6983 Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network

Authors: H. Soleimanimehr, M. J. Nategh , S. Amini

Abstract:

Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.

Keywords: Aluminum, Artificial Neural Network (ANN), BuiltupEdge, Surface Roughness, Tool Wear, Ultrasonic VibrationAssisted Turning (UAT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
6982 Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases

Authors: Sang-Hun Lee, Bum-Soo Kim, Yang-Sae Moon, Jinho Kim

Abstract:

In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.

Keywords: smartphone applications; photo mosaic; similarity search; data mining; large-scale image databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
6981 A Novel Approach to Persian Online Hand Writing Recognition

Authors: Ramin Halavati, Mansour Jamzad, Mahdieh Soleymani

Abstract:

Persian (Farsi) script is totally cursive and each character is written in several different forms depending on its former and later characters in the word. These complexities make automatic handwriting recognition of Persian a very hard problem and there are few contributions trying to work it out. This paper presents a novel practical approach to online recognition of Persian handwriting which is based on representation of inputs and patterns with very simple visual features and comparison of these simple terms. This recognition approach is tested over a set of Persian words and the results have been quite acceptable when the possible words where unknown and they were almost all correct in cases that the words where chosen from a prespecified list.

Keywords: Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
6980 A Prediction-Based Reversible Watermarking for MRI Images

Authors: Nuha Omran Abokhdair, Azizah Bt Abdul Manaf

Abstract:

Reversible watermarking is a special branch of image watermarking, that is able to recover the original image after extracting the watermark from the image. In this paper, an adaptive prediction-based reversible watermarking scheme is presented, in order to increase the payload capacity of MRI medical images. The scheme divides the image into two parts, Region of Interest (ROI) and Region of Non-Interest (RONI). Two bits are embedded in each embeddable pixel of RONI and one bit is embedded in each embeddable pixel of ROI. The experimental results demonstrate that the proposed scheme is able to achieve high embedding capacity. This is mainly caused by two reasons. First, the pixels that were excluded from data embedding due to overflow/underflow are used for data embedding. Second, large location map that need to be added to watermark data as overhead is eliminated and thus lower data embedding capacity is prevented. Moreover, the scheme provides good visual quality to the watermarked image.

Keywords: Medical image watermarking, reversible watermarking, Difference Expansion, Prediction-Error Expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
6979 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
6978 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
6977 A Web Service Platform for Support Multiple Programming Language to Access Biomedical Image Databases

Authors: Mohd Kamir Yusof, Suhailan Dato' Safei

Abstract:

Images are important in disease research, education, and clinical medicine. This paper presents a Web Service Platform (WSP) for support multiple programming languages to access image from biomedical databases. The main function WSP is to allow web users access image from biomedical databases. The WSP will receive web user-s queries. After that, it will send to Querying Server (QS) and the QS will search and retrieve data from biomedical databases. Finally, the information will display to the web users. Simple application is developed and tested for experiment purpose. Result from experiment indicated WSP can be used in biomedical environment.

Keywords: Biomedical, Image, Web Service Platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
6976 Hybrid MAC Protocols Characteristics in Multi-hops Wireless Sensor Networks

Authors: M. Miladi, T. Ezzedine, R. Bouallegue

Abstract:

In the current decade, wireless sensor networks are emerging as a peculiar multi-disciplinary research area. By this way, energy efficiency is one of the fundamental research themes in the design of Medium Access Control (MAC) protocols for wireless sensor networks. Thus, in order to optimize the energy consumption in these networks, a variety of MAC protocols are available in the literature. These schemes were commonly evaluated under simple network density and a few results are published on their robustness in realistic network-s size. We, in this paper, provide an analytical study aiming to highlight the energy waste sources in wireless sensor networks. Then, we experiment three energy efficient hybrid CSMA/CA based MAC protocols optimized for wireless sensor networks: Sensor-MAC (SMAC), Time-out MAC (TMAC) and Traffic aware Energy Efficient MAC (TEEM). We investigate these protocols with different network densities in order to discuss the end-to-end performances of these schemes (i.e. in terms of energy efficiency, delay and throughput). Through Network Simulator (NS- 2) implementations, we explore the behaviors of these protocols with respect to the network density. In fact, this study may help the multihops sensor networks designers to design or select the MAC layer which matches better their applications aims.

Keywords: Energy efficiency, medium access control, network density, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
6975 Filtering and Reconstruction System for Gray Forensic Images

Authors: Ahd Aljarf, Saad Amin

Abstract:

Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.

Keywords: Image Filtering, Image Reconstruction, Image Processing, Forensic Images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
6974 Moment Invariants in Image Analysis

Authors: Jan Flusser

Abstract:

This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a general theory how to construct these invariants and show also a few of them in explicit forms. We review efficient numerical algorithms that can be used for moment computation and demonstrate practical examples of using moment invariants in real applications.

Keywords: Object recognition, degraded images, moments, moment invariants, geometric invariants, invariants to convolution, moment computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3938
6973 Bayesian Belief Networks for Test Driven Development

Authors: Vijayalakshmy Periaswamy S., Kevin McDaid

Abstract:

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
6972 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, World View-2, land parcels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
6971 Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

This paper presents a very simple and efficient algorithm for codebook search, which reduces a great deal of computation as compared to the full codebook search. The algorithm is based on sorting and centroid technique for search. The results table shows the effectiveness of the proposed algorithm in terms of computational complexity. In this paper we also introduce a new performance parameter named as Average fractional change in pixel value as we feel that it gives better understanding of the closeness of the image since it is related to the perception. This new performance parameter takes into consideration the average fractional change in each pixel value.

Keywords: Vector Quantization, Data Compression, Encoding, Searching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
6970 Grid Artifacts Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when digital image is resized on a diagnostic monitor. In this paper we propose an automated grid artifactsdetection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: Computed radiography, grid artifacts, image filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296
6969 Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging

Authors: See Zi Siang, Khairul Hazrin Hashim, Harold Thwaites, Lee Xia Sheng, Ooi Wooi Har

Abstract:

The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.

Keywords: High Dynamic Range Image, Photography Workflow Optimization, Digital Negative Image, Architectural Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
6968 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
6967 Routing in Mobile Wireless Networks for Realtime Multimedia Applications- Reuse of Virtual Circuits

Authors: A.Khaja Kamaluddin, B.Muhammed Yousoof

Abstract:

Routing places an important role in determining the quality of service in wireless networks. The routing methods adopted in wireless networks have many drawbacks. This paper aims to review the current routing methods used in wireless networks. This paper proposes an innovative solution to overcome the problems in routing. This solution is aimed at improving the Quality of Service. This solution is different from others as it involves the resuage of the part of the virtual circuits. This improvement in quality of service is important especially in propagation of multimedia applications like video, animations etc. So it is the dire need to propose a new solution to improve the quality of service in ATM wireless networks for multimedia applications especially during this era of multimedia based applications.

Keywords: Packet buffering, Routing Table, Virtual Circuits (VC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
6966 Image Enhancement using α-Trimmed Mean ε-Filters

Authors: Mahdi Shaneh, Arash Golibagh Mahyari

Abstract:

Image enhancement is the most important challenging preprocessing for almost all applications of Image Processing. By now, various methods such as Median filter, α-trimmed mean filter, etc. have been suggested. It was proved that the α-trimmed mean filter is the modification of median and mean filters. On the other hand, ε-filters have shown excellent performance in suppressing noise. In spite of their simplicity, they achieve good results. However, conventional ε-filter is based on moving average. In this paper, we suggested a new ε-filter which utilizes α-trimmed mean. We argue that this new method gives better outcomes compared to previous ones and the experimental results confirmed this claim.

Keywords: Image enhancement, median filter, ε-filter – α-trimmed mean filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5509
6965 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach

Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy

Abstract:

Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.

Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
6964 An Additive Watermarking Technique in Gray Scale Images Using Discrete Wavelet Transformation and Its Analysis on Watermark Strength

Authors: Kamaldeep Joshi, Rajkumar Yadav, Ashok Kumar Yadav

Abstract:

Digital Watermarking is a procedure to prevent the unauthorized access and modification of personal data. It assures that the communication between two parties remains secure and their communication should be undetected. This paper investigates the consequence of the watermark strength of the grayscale image using a Discrete Wavelet Transformation (DWT) additive technique. In this method, the gray scale host image is divided into four sub bands: LL (Low-Low), HL (High-Low), LH (Low-High), HH (High-High) and the watermark is inserted in an LL sub band using DWT technique. As the image is divided into four sub bands, a watermark of equal size of the LL sub band has been inserted and the results are discussed. LL represents the average component of the host image which contains the maximum information of the image. Two kinds of experiments are performed. In the first, the same watermark is embedded in different images and in the later on the strength of the watermark varies by a factor of s i.e. (s=10, 20, 30, 40, 50) and it is inserted in the same image.

Keywords: Watermarking, discrete wavelet transform, scaling factor, steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
6963 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552