Search results for: Total Quality Management. Environmental Management System.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14045

Search results for: Total Quality Management. Environmental Management System.

1325 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

Authors: Nik Mohd Asri Nik Long, Koo Lee Feng, Zainidin K. Eshkuvatov, A. A. Khaldjigitov

Abstract:

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

Keywords: Elliptical crack, stress intensity factors, hyper singular integral equation, shear loading, conformal mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1324 Low NOx Combustion of Pulverized Petroleum Cokes

Authors: Sewon Kim, Minjun Kwon, Changyeop Lee

Abstract:

This paper is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air is optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Keywords: Petroleum cokes, Staged combustion, Low NOx, Equivalence ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
1323 A Formal Property Verification for Aspect-Oriented Programs in Software Development

Authors: Moustapha Bande, Hakima Ould-Slimane, Hanifa Boucheneb

Abstract:

Software development for complex systems requires efficient and automatic tools that can be used to verify the satisfiability of some critical properties such as security ones. With the emergence of Aspect-Oriented Programming (AOP), considerable work has been done in order to better modularize the separation of concerns in the software design and implementation. The goal is to prevent the cross-cutting concerns to be scattered across the multiple modules of the program and tangled with other modules. One of the key challenges in the aspect-oriented programs is to be sure that all the pieces put together at the weaving time ensure the satisfiability of the overall system requirements. Our paper focuses on this problem and proposes a formal property verification approach for a given property from the woven program. The approach is based on the control flow graph (CFG) of the woven program, and the use of a satisfiability modulo theories (SMT) solver to check whether each property (represented par one aspect) is satisfied or not once the weaving is done.

Keywords: Aspect-oriented programming, control flow graph, satisfiability modulo theories, property verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
1322 Retrofitting of Beam-Column Joint Using CFRP and Steel Plate

Authors: N. H. Hamid, N. D. Hadi, K. D. Ghani

Abstract:

This paper presents the retrofitting of beam-column joint using CFRP (Carbon Fiber Reinforced Polymer) and steel plate. This specimen was tested until failure up to 1.0% drift. This joint suffered severe damages and diagonal cracks at upper crack at upper column before retrofitted. CFRP were wrapped at corbel, bottom and top of the column. Steel plates with bonding were attached to the two beams and the jointing system. This retrofitted specimen is tested again under lateral cyclic loading up 1.75% drift. Visual observations show that the cracks started at joint when 0.5% drift applied at top of column. Damage of retrofitted beam-column joint occurred inside the CFRP and it cannot be seen from outside. Analysis of elastic stiffness, lateral strength, ductility, hysteresis loops and equivalent viscous damping shows that these values are higher than before retrofitting. Therefore, it is recommended to use this type of retrofitting method for beam-column joint with corbel which suffers severe damage after the earthquake.

Keywords: Beam-Column joint, ductility, stiffness, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5954
1321 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds — the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content — much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: Antioxidant, Stearate, Carbon black, Polyethylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3362
1320 Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations

Authors: A. Sarchami, N. Ashgriz, M. Kwee

Abstract:

Threedimensional numerical simulations are conducted on a full scale CANDU Moderator and Transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified.Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold (ii) low amplitude are in the core of the tank (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities.

Keywords: Bruce, Fluctuations, Numerical, Temperature, Thermal hydraulics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1319 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants

Authors: Dong Wook Lee

Abstract:

This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.

Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
1318 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

Authors: Fares Innal, Yves Dutuit, Mourad Chebila

Abstract:

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
1317 Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
1316 The Investigation of Precipitation Conditions of Chevreul’s Salt

Authors: Turan Çalban, Fatih Sevim, Oral Laçin

Abstract:

In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.

Keywords: Chevreul’s salt, copper sulphites, mixed-valence sulphite compounds, precipitating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1315 Toward Sustainable Building Design in Hot and Arid Climate with Reference to Riyadh City, Saudi Arabia

Authors: M. Alwetaishi

Abstract:

One of the most common and traditional strategies in architecture is to design buildings passively. This is a way to ensure low building energy reliance with respect to specific micro-building locations. There are so many ways where buildings can be designed passively, some of which are applying thermal insulation, thermal mass, courtyard and glazing to wall ratio. This research investigates the impact of each of these aspects with respect to the hot and dry climate of the capital of Riyadh. Thermal Analysis Simulation (TAS) will be utilized which is powered by Environmental Design Simulation Limited company (EDSL). It is considered as one of the most powerful tools to predict energy performance in buildings. There are three primary building designs and methods which are using courtyard, thermal mass and thermal insulation. The same building size and fabrication properties have been applied to all designs. Riyadh city which is the capital of the country was taken as a case study of the research. The research has taken into account various zone directions within the building as it has a large contribution to indoor energy and thermal performance. It is revealed that it is possible to achieve nearly zero carbon building in the hot and dry region in winter with minimum reliance on energy loads for building zones facing south, west and east. Moreover, using courtyard is more beneficial than applying construction materials into building envelope. Glazing to wall ratio is recommended to be 10% and not exceeding 30% in all directions in hot and arid regions.

Keywords: Sustainable buildings, hot and arid climates, passive building design, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
1314 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis

Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches

Abstract:

In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
1313 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama

Abstract:

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3650
1312 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: Close surfaces, high-order approach, numerical solutions, reaction-diffusion systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
1311 Development and Analysis of a Machine to Equally Apply Mineral Fertilizer to Soil on Slopes

Authors: Qurbanov Huseyn Nuraddin

Abstract:

Reliable food supply of the population of a country is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on slopes, the application of equal amounts of mineral fertilizers to under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that at present, there is a need to provide an equal amount of fertilizer to under the soil on slopes, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize under the soil, and unequal application of fertilizers to under the soil on slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, taking into account the physical and mechanical properties of fertilizers, is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers to under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the eight partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.

Keywords: Combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
1310 Improvement of Passengers Ride Comfort in Rail Vehicles Equipped with Air Springs

Authors: H. Sayyaadi, N. Shokouhi

Abstract:

In rail vehicles, air springs are very important isolating component, which guarantee good ride comfort for passengers during their trip. In the most new rail–vehicle models, developed by researchers, the thermo–dynamical effects of air springs are ignored and secondary suspension is modeled by simple springs and dampers. As the performance of suspension components have significant effects on rail–vehicle dynamics and ride comfort of passengers, a complete nonlinear thermo–dynamical air spring model, which is a combination of two different models, is introduced. Result from field test shows remarkable agreement between proposed model and experimental data. Effects of air suspension parameters on the system performances are investigated here and then these parameters are tuned to minimize Sperling ride comfort index during the trip. Results showed that by modification of air suspension parameters, passengers comfort is improved and ride comfort index is reduced about 10%.

Keywords: Air spring, Ride comfort improvement, Thermo– dynamical effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107
1309 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
1308 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin

Abstract:

Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.

Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4725
1307 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft

Authors: F. Caliskan

Abstract:

This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.

Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1306 Risk Factors in a Road Construction Site

Authors: V.R Gannapathy, S.K Subramaniam, A.B Mohamad Diah, M.K Suaidi, A.H Hamidon

Abstract:

The picture of a perfect road construction site is the one that utilizes conventional vertical road signs and a flagman to optimize the traffic flow with minimum hazel to the public. Former research has been carried out by Department of Occupational Safety and Health (DOSH) and Ministry of Works to further enhance smoothness in traffic operations and particularly in safety issues within work zones. This paper highlights on hazardous zones in a certain road construction or road maintenance site. Most cases show that the flagman falls into high risk of fatal accidents within work zone. Various measures have been taken by both the authorities and contractors to overcome such miseries, yet it-s impossible to eliminate the usage of a flagman since it is considered the best practice. With the implementation of new technologies in automating the traffic flow in road construction site, it is possible to eliminate the usage of a flagman. The intelligent traffic light system is designed to solve problems which contribute hazardous at road construction site and to be inline with the road safety regulation which is taken into granted.

Keywords: Intelligent Traffic Light, Critical Zones, Safety Regulation, Flagman

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6350
1305 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: Additive technologies, gas turbine engine, powder technology, turbine wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1304 Improved Neutron Leakage Treatment on Nodal Expansion Method for PWR Reactors

Authors: Antonio Carlos Marques Alvim, Fernando Carvalho da Silva, Aquilino Senra Martinez

Abstract:

For a quick and accurate calculation of spatial neutron distribution in nuclear power reactors 3D nodal codes are usually used aiming at solving the neutron diffusion equation for a given reactor core geometry and material composition. These codes use a second order polynomial to represent the transverse leakage term. In this work, a nodal method based on the well known nodal expansion method (NEM), developed at COPPE, making use of this polynomial expansion was modified to treat the transverse leakage term for the external surfaces of peripheral reflector nodes. The proposed method was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of this modified treatment of peripheral nodes for practical purposes in PWR reactors.

Keywords: Transverse leakage, nodal expansion method, power density, PWR reactors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
1303 Methods of Geodesic Distance in Two-Dimensional Face Recognition

Authors: Rachid Ahdid, Said Safi, Bouzid Manaut

Abstract:

In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.

Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1302 Latent Factors of Severity in Truck-Involved and Non-Truck-Involved Crashes on Freeways

Authors: Shin-Hyung Cho, Dong-Kyu Kim, Seung-Young Kho

Abstract:

Truck-involved crashes have higher crash severity than non-truck-involved crashes. There have been many studies about the frequency of crashes and the development of severity models, but those studies only analyzed the relationship between observed variables. To identify why more people are injured or killed when trucks are involved in the crash, we must examine to quantify the complex causal relationship between severity of the crash and risk factors by adopting the latent factors of crashes. The aim of this study was to develop a structural equation or model based on truck-involved and non-truck-involved crashes, including five latent variables, i.e. a crash factor, environmental factor, road factor, driver’s factor, and severity factor. To clarify the unique characteristics of truck-involved crashes compared to non-truck-involved crashes, a confirmatory analysis method was used. To develop the model, we extracted crash data from 10,083 crashes on Korean freeways from 2008 through 2014. The results showed that the most significant variable affecting the severity of a crash is the crash factor, which can be expressed by the location, cause, and type of the crash. For non-truck-involved crashes, the crash and environment factors increase severity of the crash; conversely, the road and driver factors tend to reduce severity of the crash. For truck-involved crashes, the driver factor has a significant effect on severity of the crash although its effect is slightly less than the crash factor. The multiple group analysis employed to analyze the differences between the heterogeneous groups of drivers.

Keywords: Crash severity, structural equation modeling, truck-involved crashes, multiple group analysis, crash on freeway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
1301 Detecting and Tracking Vehicles in Airborne Videos

Authors: Hsu-Yung Cheng, Chih-Chang Yu

Abstract:

In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.

Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1300 Trace Emergence of Ants- Traffic Flow, based upon Exclusion Process

Authors: Ali Lemouari, Mohamed Benmohamed

Abstract:

Biological evolution has generated a rich variety of successful solutions; from nature, optimized strategies can be inspired. One interesting example is the ant colonies, which are able to exhibit a collective intelligence, still that their dynamic is simple. The emergence of different patterns depends on the pheromone trail, leaved by the foragers. It serves as positive feedback mechanism for sharing information. In this paper, we use the dynamic of TASEP as a model of interaction at a low level of the collective environment in the ant-s traffic flow. This work consists of modifying the movement rules of particles “ants" belonging to the TASEP model, so that it adopts with the natural movement of ants. Therefore, as to respect the constraints of having no more than one particle per a given site, and in order to avoid collision within a bidirectional circulation, we suggested two strategies: decease strategy and waiting strategy. As a third work stage, this is devoted to the study of these two proposed strategies- stability. As a final work stage, we applied the first strategy to the whole environment, in order to get to the emergence of traffic flow, which is a way of learning.

Keywords: Ants system, emergence, exclusion process, pheromone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
1299 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
1298 Effect of TCSR on Measured Impedance by Distance Protection in Presence Single Phase to Earth Fault

Authors: Mohamed Zellagui, Abdelaziz Chaghi

Abstract:

This paper presents the impact study of apparent reactance injected by series Flexible AC Transmission System (FACTS) i.e. Thyristor Controlled Series Reactor (TCSR) on the measured impedance of a 400 kV single electrical transmission line in the presence of phase to earth fault with fault resistance. The study deals with an electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by TCSR connected at midpoint of the line. This compensator used to inject active and reactive powers is controlled by three TCSR-s. The simulations results investigate the impacts of the TCSR on the parameters of short circuit calculation and parameters of measured impedance by distance relay in the presence of earth fault for three cases study.

Keywords: TCSR, Transmission line, Apparent reactance, Earth fault, Symmetrical components, Distance protection, Measured impedance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
1297 On Mobile Checkpointing using Index and Time Together

Authors: Awadhesh Kumar Singh

Abstract:

Checkpointing is one of the commonly used techniques to provide fault-tolerance in distributed systems so that the system can operate even if one or more components have failed. However, mobile computing systems are constrained by low bandwidth, mobility, lack of stable storage, frequent disconnections and limited battery life. Hence, checkpointing protocols having lesser number of synchronization messages and fewer checkpoints are preferred in mobile environment. There are two different approaches, although not orthogonal, to checkpoint mobile computing systems namely, time-based and index-based. Our protocol is a fusion of these two approaches, though not first of its kind. In the present exposition, an index-based checkpointing protocol has been developed, which uses time to indirectly coordinate the creation of consistent global checkpoints for mobile computing systems. The proposed algorithm is non-blocking, adaptive, and does not use any control message. Compared to other contemporary checkpointing algorithms, it is computationally more efficient because it takes lesser number of checkpoints and does not need to compute dependency relationships. A brief account of important and relevant works in both the fields, time-based and index-based, has also been included in the presentation.

Keywords: Checkpointing, forced checkpoint, mobile computing, recovery, time-coordinated.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
1296 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids

Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel

Abstract:

Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.

Keywords: Cyber security, performance, protocols, security standards, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869