Search results for: images processing
1280 Quantitative Analysis of Weld Defect Images in Industrial Radiography Based Invariant Attributes
Authors: N. Nacereddine, M. Tridi, S. S. Belaïfa, M. Zelmat
Abstract:
For the characterization of the weld defect region in the radiographic image, looking for features which are invariant regarding the geometrical transformations (rotation, translation and scaling) proves to be necessary because the same defect can be seen from several angles according to the orientation and the distance from the welded framework to the radiation source. Thus, panoply of geometrical attributes satisfying the above conditions is proposed and which result from the calculation of the geometrical parameters (surface, perimeter, etc.) on the one hand and the calculation of the different order moments, on the other hand. Because the large range in values of the raw features and taking into account other considerations imposed by some classifiers, the scaling of these values to lie between 0 and 1 is indispensable. The principal component analysis technique is used in order to reduce the number of the attribute variables in the aim to give better performance to the further defect classification.
Keywords: Geometric parameters, invariant attributes, principal component analysis, weld defect image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811279 Influence of Thermal Annealing on The Structural Properties of Vanadyl Phthalocyanine Thin Films: A Comparative Study
Authors: Fakhra Aziz, K. Sulaiman, M. R. Muhammad, M. Hassan Sayyad, Kh. Karimov
Abstract:
This paper presents a comparative study on Vanadyl Phthalocyanine (VOPc) thin films deposited by thermal evaporation and spin coating techniques. The samples were prepared on cleaned glass substrates and annealed at various temperatures ranging form 95oC to 155oC. To obtain the morphological and structural properties of VOPc thin films, X-ray diffraction (XRD) technique and atomic force microscopy (AFM) have been implied. The AFM topographic images show a very slight difference in the thermally grown films, before and after annealing, however best results are achieved for the spin-cast film annealed at 125oC. The XRD spectra show no existence of the sharp peaks, suggesting the material to be amorphous. The humps in the XRD patterns indicate the presence of some crystallites.Keywords: Annealing, optical properties, thin films, Vanadylphthalocyanine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24361278 Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging
Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski
Abstract:
The paper presents the multi-element synthetic transmit aperture (MSTA) method with a small number of elements transmitting and all elements apertures in medical ultrasound imaging. As compared to the other methods MSTA allows to increase the system frame rate and provides the best compromise between penetration depth and lateral resolution. In the experiments a 128-element linear transducer array with 0.3 mm pitch excited by a burst pulse of 125 ns duration were used. The comparison of 2D ultrasound images of tissue mimicking phantom obtained using the STA and the MSTA methods is presented to demonstrate the benefits of the second approach. The results were obtained using SA algorithm with transmit and receive signals correction based on a single element directivity function.Keywords: Beamforming, frame rate, synthetic aperture, ultrasound imaging
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24561277 Matching Facial Images using Age Related Morphing Changes
Authors: Udeni Jayasinghe, Anuja Dharmaratne
Abstract:
Each year many people are reported missing in most of the countries in the world owing to various reasons. Arrangements have to be made to find these people after some time. So the investigating agencies are compelled to make out these people by using manpower. But in many cases, the investigations carried out to find out an absconding for a long time may not be successful. At a time like that it may be difficult to identify these people by examining their old photographs, because their facial appearance might have changed mainly due to the natural aging process. On some occasions in forensic medicine if a dead body is found, investigations should be held to make sure that this corpse belongs to the same person disappeared some time ago. With the passage of time the face of the person might have changed and there should be a mechanism to reveal the person-s identity. In order to make this process easy, we must guess and decide as to how he will look like by now. To address this problem this paper presents a way of synthesizing a facial image with the aging effects.
Keywords: Cranio-facial growth model, eigenfaces, eigenvectors, Face Anthropometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17411276 EPR Hiding in Medical Images for Telemedicine
Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar
Abstract:
Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27541275 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms
Authors: Nebi Gedik
Abstract:
One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).
Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8821274 Edge-end Pixel Extraction for Edge-based Image Segmentation
Authors: Mahinda P. Pathegama, Özdemir Göl
Abstract:
Extraction of edge-end-pixels is an important step for the edge linking process to achieve edge-based image segmentation. This paper presents an algorithm to extract edge-end pixels together with their directional sensitivities as an augmentation to the currently available mathematical models. The algorithm is implemented in the Java environment because of its inherent compatibility with web interfaces since its main use is envisaged to be for remote image analysis on a virtual instrumentation platform.
Keywords: edge-end pixels, image processing, imagesegmentation, pixel extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21541273 H.263 Based Video Transceiver for Wireless Camera System
Authors: Won-Ho Kim
Abstract:
In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.Keywords: Digital signal processing, H.263 video encoder, surveillance camera, wireless video transceiver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531272 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry
Authors: F. Yildiz, S. Y. Oturanc
Abstract:
Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect georeferencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.
Keywords: Photogrammetry, GPS/IMU Systems, Geo- Referencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27201271 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411270 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry
Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine
Abstract:
The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15801269 Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features
Authors: M.Ghazvini, S. A. Monadjemi, N. Movahhedinia, K. Jamshidi
Abstract:
In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.Keywords: Defect detection, tile and ceramic quality inspection, wavelet transform, classification, neural networks, statistical features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771268 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191267 Watermark-based Counter for Restricting Digital Audio Consumption
Authors: Mikko Löytynoja, Nedeljko Cvejic, Tapio Seppänen
Abstract:
In this paper we introduce three watermarking methods that can be used to count the number of times that a user has played some content. The proposed methods are tested with audio content in our experimental system using the most common signal processing attacks. The test results show that the watermarking methods used enable the watermark to be extracted under the most common attacks with a low bit error rate.
Keywords: Digital rights management, restricted usage, content protection, spread spectrum, audio watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661266 Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves
Authors: Hirofumi Taki, Takuya Sakamoto, Makoto Yamakawa, Tsuyoshi Shiina, Toru Sato
Abstract:
For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.Keywords: Ultrasonography, Calcification, Decorrelation, Forward scattered wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521265 The Survey and the Comparison of Maximum Likelihood, Mahalanobis Distance and Minimum Distance Methods in Preparing Landuse Map in the Western Part of Isfahan Province
Authors: Ali Gholami, M.Esfadiari, M.H.Masihabadi
Abstract:
In this research three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed in the Western part of Isfahan province in the Iran country. For this purpose, the IRS satellite images and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. In these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods to separate land uses due to spread of the land uses, it-s suggested the visual interpretation of the map, to preparing the land use map in this region. The map prepared by visual interpretation is in high accuracy if it will be accompany with the visit of the region.
Keywords: Aghche Region, land use map, MaximumLikelihood, Mahalanobis Distance and Minimum Distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18241264 Detection and Analysis of Deficiencies in Groundnut Plant using Geometric Moments
Authors: Sumeet S. Nisale, Chandan J. Bharambe, Vidya N.More
Abstract:
We propose our genuine research of geometric moments which detects the mineral inadequacy in the frail groundnut plant. This plant is prone to many deficiencies as a result of the variance in the soil nutrients. By analyzing the leaves of the plant, we detect the visual symptoms that are not recognizable to the naked eyes. We have collected about 160 samples of leaves from the nearby fields. The images have been taken by keeping every leaf into a black box to avoid the external interference. For the first time, it has been possible to provide the farmer with the stages of deficiencies. This paper has applied the algorithms successfully to many other plants like Lady-s finger, Green Bean, Lablab Bean, Chilli and Tomato. But we submit the results of the groundnut predominantly. The accuracy of our algorithm and method is almost 93%. This will again pioneer a kind of green revolution in the field of agriculture and will be a boon to that field.Keywords: Component image, geometric moments, average intensity, average affected area, black box
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21321263 Multimedia E-Books for Digital Mechanism and Gear Library
Authors: Rike Brecht, Heidi Krömker, Adrian Kühlewind
Abstract:
This paper presents a digital engineering library – the Digital Mechanism and Gear Library, DMG-Lib – providing a multimedia collection of e-books, pictures, videos and animations in the domain of mechanisms and machines. The specific characteristic about DMG-Lib is the enrichment and cross-linking of the different sources. DMG-Lib e-books not only present pages as pixel images but also selected figures augmented with interactive animations. The presentation of animations in e-books increases the clearness of the information. To present the multimedia e-books and make them available in the DMG-Lib internet portal a special e-book reader called StreamBook was developed for optimal presentation of digitized books and to enable reading the e-books as well as working efficiently and individually with the enriched information. The objective is to support different user tasks ranging from information retrieval to development and design of mechanisms.Keywords: E-books, digital library, multimedia, enrichment and cross-linking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301262 Performance Analysis of the Subgroup Method for Collective I/O
Authors: Kwangho Cha, Hyeyoung Cho, Sungho Kim
Abstract:
As many scientific applications require large data processing, the importance of parallel I/O has been increasingly recognized. Collective I/O is one of the considerable features of parallel I/O and enables application programmers to easily handle their large data volume. In this paper we measured and analyzed the performance of original collective I/O and the subgroup method, the way of using collective I/O of MPI effectively. From the experimental results, we found that the subgroup method showed good performance with small data size.
Keywords: Collective I/O, MPI, parallel file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751261 Detection of Moving Images Using Neural Network
Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh
Abstract:
Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.
Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31491260 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network
Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad
Abstract:
This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001259 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.
Keywords: Composite, long fiber reinforced thermoplastics, mechanical properties, dynamic mechanical analysis, time temperature superposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991258 Cloud Computing: Changing Cogitation about Computing
Authors: Mehrdad Mahdavi Boroujerdi, Soheil Nazem
Abstract:
Cloud Computing is a new technology that helps us to use the Cloud for compliance our computation needs. Cloud refers to a scalable network of computers that work together like Internet. An important element in Cloud Computing is that we shift processing, managing, storing and implementing our data from, locality into the Cloud; So it helps us to improve the efficiency. Because of it is new technology, it has both advantages and disadvantages that are scrutinized in this article. Then some vanguards of this technology are studied. Afterwards we find out that Cloud Computing will have important roles in our tomorrow life!Keywords: Cloud Computing, Grid Computing, Internet as a Platform, On-demand Computing, Software as a Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16321257 Adaptive Gaussian Mixture Model for Skin Color Segmentation
Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong
Abstract:
Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151256 The Use of Information Technologies in Special Education for Preparation of Individual Education Programs
Authors: Yasar Guneri Sahin, Mehmet Cudi Okur
Abstract:
In this presentation, we discuss the use of information technologies in the area of special education for teaching individuals with learning disabilities. Application software which was developed for this purpose is used to demonstrate the applicability of a database integrated information processing system to alleviate the burden of educators. The software allows the preparation of individualized education programs based on the predefined objectives, goals and behaviors.
Keywords: Special education, disabled individual, informationtechnology, individual education programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061255 Inter-frame Collusion Attack in SS-N Video Watermarking System
Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi
Abstract:
Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.
Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14961254 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.
Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581253 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24541252 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper presents a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network-based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation on an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.
Keywords: Attention Multiple Instance Learning, Multiple Instance Learning, transfer learning, histopathological slides, cancer tissue classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211251 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.
Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830