
Abstract—Extraction of edge-end-pixels is an important step for

the edge linking process to achieve edge-based image segmentation.

This paper presents an algorithm to extract edge-end pixels together

with their directional sensitivities as an augmentation to the currently

available mathematical models. The algorithm is implemented in the

Java environment because of its inherent compatibility with web

interfaces since its main use is envisaged to be for remote image

analysis on a virtual instrumentation platform.

Keywords—edge-end pixels, image processing, image

segmentation, pixel extraction

I. INTRODUCTION

MAGE segmentation is a central problem in image

processing. Various techniques have been proposed to cope

with the problem. These popularly include edge-based

methods. Unfortunately, edge-based approaches can yield

inaccurate results if broken boundaries are present in the

image. Such boundaries need to be linked for reliable results.

This paper presents an algorithm to reliably extract the

edge-end pixels for use in edge-based image segmentation in

image processing. The extracted pixels can then be drawn

into one of the several techniques available in image

processing. Edge-linking technique is one of these, which is

capable of proceeding with contour filling with its embedded

directional sensitivity functions [1]. The proximity

selectiveness feature of the edge-linking model allows the

appropriate pixels to be selected for linking. In addition to the

embedded functions, the algorithm presented here also

nominates directions for each edge-end pixel. This direction

nomination assigned at the same time of edge-end pixel

extraction aims at enhancing the acuity of the edge-linking

technique.

II. ALGORITHM OVERVIEW

The algorithm is implemented in Java with two major

subroutines (classes). The first class compiles the image

whereas the second class does householding.

Mahinda P. Pathegama is with the Knowledge-based Intelligent

Engineering Systems Centre, University of South Australia, GPO Box 2471,

Adelaide SA 5001 (e--mail: mahinda@iee.org).

Özdemir Göl is with the School of Electrical and Information Engineering,

University of South Australia, GPO Box 2471, Adelaide SA 5001

(corresponding author- phone: +61 8 8302 3285; fax: +61 8 8302 3384; e-

mail: Ozdemir.Gol@unisa.edu.au).

The algorithm aims at performing two tasks: extraction of

edge-end pixels and recognition of the associated directions.

At the outset, the algorithm reads all the pixels in a 2-D image

row by row by a speedy process. The search first identifies

each pixel located at edge-ends by seeking the neighbouring

pixel values. If the target pixel is found it records the

coordinates of the recognised pixel to complete the extraction.

To perform the task of recognition, the numeric scheme

indicated in Fig. 1 is used to represent the eight ‘directions’ of

the target pixel. Similar schemes have been used for image

processing in the past. One method is the so-called Chain

Coding [2][3][4], which traces a pixel-wide line, using the

scheme of Fig. 1.

The direction of each of the detected pixels takes into

account the known alignment of neighbouring pixels.

Figure 1: The eight possible directions for detected pixels

The directions set by the algorithm encourage the neural

functions to propagate neighbouring edge-end signals. As an

example, the direction indicated by the number zero enhances

the selection activity of neural directional sensitivity at the

pixel location (i, j+1). The directional information obtained

from the algorithm can be passed on to be used in artificial

neural activities where the enhancement of directional

sensitivity is required.

III. ALGORITHM EXECUTION

The execution starts with the creation of a two dimensional

grid using a two dimensional array of a certain number of

columns and rows. In the following, Java code for the salient

operations will be given in the interest of transparency.

 private Pix[][] pixArray;

 pixArray = new Pix[rows][cols];

The array is then filled with new Pix objects, where the

Edge-end Pixel Extraction for Edge-based

Image Segmentation

Mahinda P. Pathegama and Özdemir Göl

I

0

1

2

3

 7

4

5

6

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

453International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

38
5.

pd
f

http://waset.org/publications/3385/Edge-end-Pixel-Extraction-for-Edge-based-Image-Segmentation-

value of the x and y coordinates is set using the Pix class

constructor.

 for(int i=0;i<rows;i++)

 {

 for(int j=0;j<cols;j++)

 {

 pixArray[i][j] = new Pix(j,i);

 }

 }

Once this is complete, specified Pix objects have their filled

variable set to true to represent an actual pixel. Then an

ASCII representation of the grid with the filled pixels is

printed out. One test sample supplied is given in Fig. 2 and

corresponding input image is shown in Fig. 3.

 0 1 2 3 4 5 6 7 8 9 10
0 - - - - - - - - - - -
1 - * - - - * - - * - -
2 - - - - * - * - - - -
3 - - - - - - - - - - -
4 - - * - - - - - * - -
5 - * - - - * - - - * -
6 - * - - - - - - * - -
7 - - * - - - - - - * -
8 - * * * * - * * - * -
9 - * * - - - - - * - -
10 - - - - - - - - - - -

Figure 2: ASCII representation for the input image

0

0

1

2

1 2 3 4 5 6

3

4

5

6

7

8

9

10

7 8 9 10

Figure 3: Input image used in the algorithm: Image pixels (black) and empty

pixels (white) in 11x11 grid

The Pix.java class represents a pixel in the grid and stores

information pertaining to that pixel space. This includes

variables which store the x coordinate, the y coordinate,

whether the pixel space is ‘filled’ and its direction. Each

variable has Accessor and Mutator stages.

The algorithm searches all Pix objects in the array using the

search() method for any that have their filled variable set to

‘true’. For example, the code below checks the right

neighbouring object.

 if(pixArray[i+1][j].getFilled())

 {

 count++;

 dir=directionarray[2];

 checkdiag=false;

 }

Should it find any objects, the searchNeighbours(i,j)

method is then called to examine all other eight Pix objects

surrounding the discovered Pix object located at row i, column

j. In this way, every pixel is investigated separately by

searching every direction circularly in counter clockwise

sense.

In the searchNeighbours stage, an incremented variable is

used to count the number of neighbouring Pix objects which

are filled. First, the horizontal and vertical neighbours are

examined. If none of them is filled, the diagonal Pix objects

are checked. This step sets the direction of the incomplete

pixel to be the opposite to that of the neighbouring cell

direction. Should the count value of neighbouring filled

pixels equal 1, then the direction of the original Pix object is

set such that the value is opposite to that of the neighbouring

filled object. The Pix object is then stored in an ArrayList and

has the variable isSet assigned ‘true’ in the method set():

 if(count==1){

 set(pixArray[i][j],dir);

 }

If the count is greater than one, then the search continues;

the direction remains unassigned.

IV. RESULTS

A new ASCII grid representation is constructed showing

only the extracted edge-end pixels, as shown in Fig. 4.

 0 1 2 3 4 5 6 7 8 9 10
0 - - - - - - - - - - -
1 - - - - - - - - - - -
2 - - - - * - * - - - -
3 - - - - - - - - - - -
4 - - * - - - - - * - -
5 - - - - - - - - - - -
6 - - - - - - - - - - -
7 - - - - - - - - - - -
8 - - - - * - * - - - -
9 - - - - - - - - - - -
10 - - - - - - - - - - -

Figure 4: ASCII representation of the results produced for the input data in

Fig. 2: Extracted edge-end pixels

The target pixels are detected and extracted from the image

pixels of Fig. 3. The outcome is the extracted edge-end pixels

as in Fig. 5. A comparison with Fig. 3 shows that the isolated

pixels located at (1,1) and (1,8) are also deleted by the

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

454International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

38
5.

pd
f

http://waset.org/publications/3385/Edge-end-Pixel-Extraction-for-Edge-based-Image-Segmentation-

algorithm as constituting noise.

0

0

1

2

1 2 3 4 5 6

3

4

5

6

7

8

9

10

7 8 9 10

Figure 5: Output image given by the algorithm: Extracted edge-end pixels

If the size of the ArrayList is greater than 0 (i.e. it contains

one or more Pix objects), then the x coordinate, the y

coordinate and the direction of the Pix objects stored in the

ArrayList are displayed. The result shown in Fig. 6 is

produced for the input data shown in Fig. 2. Directions are

assigned in accordance with the scheme depicted in Fig. 1.

x coord: 4, y coord: 2, direction: 5
x coord: 6, y coord: 2, direction: 7
x coord: 2, y coord: 4, direction: 1
x coord: 8, y coord: 4, direction: 3
x coord: 4, y coord: 8, direction: 0
x coord: 6, y coord: 8, direction: 4

Figure 6: Test results produced for the input data in Fig. 2: Locations and

directions for the edge-end pixels

0

0

1

2

1 2 3 4

5

5 6

7

3

4

5

6

1

7

8

9

10

0 4

7 8 9 10

3

Figure 7: Composite image comprising extracted edge-end pixels, input image

and directional sensitivities

Fig. 7 presents the output image representing the extracted

edge-end pixels superimposed on the input image. The

directional sensitivities are now assigned for each pixel as

indicated by the arrows in the composite image of Fig. 7. The

outcomes from this step can be applied to surface perception

or edge-linking processes when they utilised directional

sensitivities.

V. APPLICATIONS

A. Neural Model Enhancement

Artificial neural activities can be considerably enhanced by

the directional sensitivity manipulation performed by the

direction-assigning algorithm presented in this paper. The

extracted edge-end pixels - with the aid of neighbouring cell-

responses - provide the basis for surface creation or edge-

linking. The process uses as input the edge-end pixels of each

fragment along with directional information obtained from

direction sensitive neurons. Similarity- and proximity-based

selection is used during the process.

B. Modelling of Biological Systems

Several recent studies have confirmed the presence of

direction-sensitive cells in the visual cortex. Most cells in

layer IV have spatiotemporally oriented receptive fields in

which gradients of response time across the field convey a

direction [5]. Linear summation of these responses across the

receptive field, followed by a static nonlinear amplification,

has been shown to account for directional tuning in layer IV.

Most neurons in area VI also manifest some directional tuning

and spatiotemporal orientation [5].

A study of visually responsive neurons in the superficial

layers of the rat brain found that cell responses within the

superior colliculus respond to direction by evoking direction-

biased cells [6]. Almost every cell in the middle temporal area

(MT) is sensitive to direction of movement [6]. This has

provided the impetus for many vision researchers to turn their

attention to motion rather than 'directional-sensitivity'.

The algorithm presented in this paper can be used in the

modelling of the above biological phenomena. The technique

used in the algorithm intrinsically reflects the tuning of cells

in opposing directions, as illustrated in Fig. 7. This is also in

agreement with a laboratory study on neurotransmitter [7]

which revealed that directionally sensitive ganglion cells

become equally responsive to opposite directions when a

visual stimulus is present.

C. Medical Image Analysis

Medical image analysis is accomplished by applying a

number of image processing techniques sequentially. These

may include smooth filtering, edge detection, thresholding

along with morphological operations including the removal of

small features and thinning operation.

The application of edge detection and thresholding steps

invariably reveal discontinuities in cell boundaries. The

algorithm presented in this paper is suitable in closing gaps

without distorting the object boundaries in medical images.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

455International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

38
5.

pd
f

http://waset.org/publications/3385/Edge-end-Pixel-Extraction-for-Edge-based-Image-Segmentation-

D. Virtual Instrumentation Platform for Remote Clients

A virtual instrumentation (VI) platform is ideally suited to

image analysis by remote clients via the Internet. The inbuilt

functions of a VI can be used to extract and label the objects

during the edge-based image segmentation process.

Additional advantages of using the VI platform are user

friendliness, interactive use and suitability for use on the web.

The algorithm satisfies the requirements for remote delivery

due to being compiled in Java.

VI. CONCLUSION

The algorithm presented successfully extracts edge-end

pixels in their entirety. The simplicity of the proposed

algorithm should make it an attractive tool for edge-based

image segmentation; essential in biological cell image analysis

and indeed in any image processing task.

REFERENCES

[1] M. P. Pathegama and Ö. Göl, “An Artificial Neural Process to Create

Continuous Object Boundaries in Medical Image Analysis”,

International Scientific Journal of Computing, vol. 3, Issue 1, 2004.

[2] H. Freeman, “On the encoding of arbitrary geometric configurations,”

IEEE Trans. Elec. Computers, vol.10, 1961, pp. 260-8.

[3] H. Freeman, “Computer processing of line-drawing images,” Computing

Surveys, vol.6, 1974, pp. 57-97.

[4] H. Freeman and L. S. Davis, “A corner-finding algorithm for chain-

coded curves,” IEEE Trans. Computers, vol.26, , 1997, pp. 297-303.

[5] A. Murthy and A. L. Humphrey, “Inhibitory contributions to

spatiotemporal receptive-field structure and direction selectivity in

simple cells of cat area 17,” Neurophysiology, vol. 81, no. 3, 1999, pp.

1212-24.

[6] S. Fortin, A. Chabli, I. Dumont, S. Shumikhina. and S. K. Itaya,

“Maturation of visual receptive field properties in the rat superior

colliculus,” Brain Research, vol. 112, no. 1, 1999, pp. 55-64.
[7] H. J. Wyatt and N. N. Daw, “Specific effects of neurotransmitter

antagonists on ganglion cells in rabbit retina,” Science, vol. 191, 1976,

pp. 204-205.

Mahinda P. Pathegama holds a Bachelor of Engineering degree with First

Class Honours in Electrical and Mechatronic Engineering from the University

of South Australia, Australia. He is currently a PhD candidate at the

University of South Australia.

He has been passionately interested in being able to model the human

vision and the brain, particularly with the aid of artificial neural networks. His

PhD research has applied engineering skills crucial to medicine, developing

artificial intelligence techniques to enhance diagnostic accuracy in medical

practice.

Mr. Pathegama has gained much recognition for his academic

achievements by winning prestigious awards and prizes which have included

the Sir William Goodman Electrical Engineering Prize, the Australian

Postgraduate Award, the Chancellor’s Award’ and the Dean’s Merit Award of

the University of South Australia and the South Australian ETSA Utilities

Prize. He is a Member of The Institution of Engineers, Australia (MIEAust),

and a Member of the Institution of Electrical Engineers (MIEE), UK.

Özdemir Göl has well recognised expertise in the advanced application of

engineering techniques to problems ranging from test automation in

manufacturing to medical applications. He holds the degrees of Master of

Engineering Science from the Istanbul Technical University, Turkey, Master

of Engineering from the University of Melbourne, Australia, and PhD from

the University of Adelaide, Australia; all in electrical engineering.

He is currently Head of Electrical Engineering at the University of South

Australia, and Director of the Electrical Machines and Drives Research Group

which he has founded. Previously he worked in industry and academia in

Prof. Göl has pioneered the use of virtual instrumentation techniques in

Australia and has published a considerable number of journal and conference

papers on the multidisciplinary application of VI techniques to the solution of

a diverse range of problems. He conducts professional courses for practising

scientists and engineers in addition to consulting for industry and research

establishments. He is a Fellow of The Institution of Engineers, Australia,

(FIEAust) and a Fellow of the Institution of Electrical Engineers, UK, (FIEE).

Europe.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

456International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

38
5.

pd
f

http://waset.org/publications/3385/Edge-end-Pixel-Extraction-for-Edge-based-Image-Segmentation-

