Search results for: field control
4654 Efficient CT Image Volume Rendering for Diagnosis
Authors: HaeNa Lee, Sun K. Yoo
Abstract:
Volume rendering is widely used in medical CT image visualization. Applying 3D image visualization to diagnosis application can require accurate volume rendering with high resolution. Interpolation is important in medical image processing applications such as image compression or volume resampling. However, it can distort the original image data because of edge blurring or blocking effects when image enhancement procedures were applied. In this paper, we proposed adaptive tension control method exploiting gradient information to achieve high resolution medical image enhancement in volume visualization, where restored images are similar to original images as much as possible. The experimental results show that the proposed method can improve image quality associated with the adaptive tension control efficacy.Keywords: Tension control, Interpolation, Ray-casting, Medical imaging analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23724653 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8154652 Controller Design for Active Suspension System of ¼ Car with Unknown Mass and Time-Delay
Authors: Ali Al-Zughaibi, Huw Davies
Abstract:
The purpose of this paper is to present a modeling and control of a quarter-car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller is to derive a control law to achieve stability of the system and convergence that can considerably improve ride comfort and road disturbance handling. This is accomplished by using Routh-Hurwitz criterion based on defined parameters. Mathematical proof is given to show the ability of the designed controller to ensure the target of design, implementation with the active suspension system and enhancement dispersion oscillation of the system despite these problems. Simulations were also performed to control quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.Keywords: Active suspension system, disturbance rejection, dynamic uncertainty, time-delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52304651 Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control
Authors: Patil Ashwini, Archana Thosar
Abstract:
This paper addresses the mathematical model of wind energy system useful for designing fault tolerant control. To serve the demand of power, large capacity wind energy systems are vital. These systems are installed offshore where non planned service is very costly. Whenever there is a fault in between two planned services, the system may stop working abruptly. This might even lead to the complete failure of the system. To enhance the reliability, the availability and reduce the cost of maintenance of wind turbines, the fault tolerant control systems are very essential. For designing any control system, an appropriate mathematical model is always needed. In this paper, the two-mass model is modified by considering the frequent mechanical faults like misalignments in the drive train, gears and bearings faults. These faults are subject to a wear process and cause frictional losses. This paper addresses these faults in the mathematics of the wind energy system. Further, the work is extended to study the variations of the parameters namely generator inertia constant, spring constant, viscous friction coefficient and gear ratio; on the pole-zero plot which is related with the physical design of the wind turbine. Behavior of the wind turbine during drive train faults are simulated and briefly discussed.
Keywords: Mathematical model of wind energy system, stability analysis, shaft stiffness, viscous friction coefficient, gear ratio, generator inertia, fault tolerant control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19044650 The Implementation of Remote Automation Execution Agent over ACL on QOS POLICY Based System
Authors: Hazly Amir, Roime Puniran
Abstract:
This paper will present the implementation of QoS policy based system by utilizing rules on Access Control List (ACL) over Layer 3 (L3) switch. Also presented is the architecture on that implementation; the tools being used and the result were gathered. The system architecture has an ability to control ACL rules which are installed inside an external L3 switch. ACL rules used to instruct the way of access control being executed, in order to entertain all traffics through that particular switch. The main advantage of using this approach is that the single point of failure could be prevented when there are any changes on ACL rules inside L3 switches. Another advantage is that the agent could instruct ACL rules automatically straight away based on the changes occur on policy database without configuring them one by one. Other than that, when QoS policy based system was implemented in distributed environment, the monitoring process can be synchronized easily due to the automate process running by agent over external policy devices.Keywords: QOS, ACL, L3 Switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12314649 Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha
Abstract:
High voltage insulator has to withstand sever electrical stresses. Higher electrical stresses lead to erosion of the insulator surface. Degradation of insulating properties leads to flashover and in some extreme cases it may cause to puncture. For analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By minimizing the electrical stresses, reliability of the power system will improve. In this paper electric field intensity at critical regions of 400 kV silicone composite insulator is analyzed using finite element method. Insulator is designed using FEMM-2D software package. Electric Field Analysis (EFA) results are analyzed for five cases i.e., only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two sides grading ring. These EFA results recommended that two sides grading ring is better for minimization of electrical stresses and improving life span of insulator.
Keywords: Polymer insulator, electric field analysis, numerical methods, finite element method, FEMM-2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11484648 Assessing and Evaluating the Course Outcomes of Control Systems Course Mapping Complex Engineering Problem Solving Issues and Associated Knowledge Profiles with the Program Outcomes
Authors: Muhibul Haque Bhuyan
Abstract:
In the current context, the engineering program educators need to think about how to develop the concepts and complex engineering problem-solving skills through various complex engineering activities by the undergraduate engineering students in various engineering courses. But most of them are facing challenges to assess and evaluate these skills of their students. In this study, detailed assessment and evaluation methods for the undergraduate Electrical and Electronic Engineering (EEE) program are stated using the Outcome-Based Education (OBE) approach. For this purpose, a final year course titled control systems has been selected. The assessment and evaluation approach, course contents, course objectives, course outcomes (COs), and their mapping to the program outcomes (POs) with complex engineering problems and activities via the knowledge profiles, performance indicators, rubrics of assessment, CO and PO attainment data, and other statistics, are reported for a student-cohort of control systems course registered by the students of BSc in EEE program in Spring 2021 Semester at the EEE Department of Southeast University (SEU). It is found that the target benchmark was achieved by the students of that course. Several recommendations for the continuous quality improvement (CQI) process are also provided.
Keywords: Complex engineering problem, knowledge profiles, OBE, control systems course, COs, PIs, POs, assessment rubrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6114647 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control
Authors: B. Dora Arul Selvi, .N. Kamaraj
Abstract:
Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.
Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14914646 Design of QFT-Based Self-Tuning Deadbeat Controller
Authors: H. Mansor, S. B. Mohd Noor
Abstract:
This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response. By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called selftuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFTbased dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.
Keywords: Deadbeat control, quantitative feedback theory (QFT), robust control, self-tuning control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23334645 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10404644 Effect of Cultivars and Weeding Regimes on Soybean Yields
Authors: M. Rezvani, M. Ahangari, F. Zaefarian
Abstract:
To study the performance of soybean (Glycine max L.) cultivars in varying weeding regimes, a field experiment was conducted in 2010. The experiment was split plot in a randomized complete block design with 3 replicates. The four cultivars and two lines of soybean including: Sahar, Hill, Sari, Telar, 032 and 033 in main plot and weeding regime consist of no weeding (control), one weeding (35 days after planting) and two weeding (35+20 days after planting) were randomized in sub plot. In weed infested plots inevitably had the highest yield reduction in all varieties. On the other hand, plots weeded twice showed the best performance for all cultivars and lines. Although 033 had the highest yield over weeding regimes, but Hill was the best cultivar in suppression of weeds, which indicated the competitiveness of this cultivar. Double weeding, with the use of competitive soybean cultivars would be an effective approach for producing yield.
Keywords: Biomass, Competition, Density, Weed suppression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21454643 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change
Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee
Abstract:
In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.
Keywords: Data-driven analysis, demand response, direct load control, HVAC system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394642 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16484641 Analysis of the Shielding Effectiveness of Several Magnetic Shields
Authors: Diako Azizi, Hosein Heydari, Ahmad Gholami
Abstract:
Today with the rapid growth of telecommunications equipment, electronic and developing more and more networks of power, influence of electromagnetic waves on one another has become hot topic discussions. So in this article, this issue and appropriate mechanisms for EMC operations have been presented. First, a source of alternating current (50 Hz) and a clear victim in a certain distance from the source is placed. With this simple model, the effects of electromagnetic radiation from the source to the victim will be investigated and several methods to reduce these effects have been presented. Therefore passive and active shields have been used. In some steps, shielding effectiveness of proposed shields will be compared. . It should be noted that simulations have been done by the finite element method (FEM).
Keywords: Electrical field, field distribution, finite element method, shielding effectiveness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17524640 A General Mandatory Access Control Framework in Distributed Environments
Authors: Feng Yang, Xuehai Zhou, Dalei Hu
Abstract:
In this paper, we propose a general mandatory access framework for distributed systems. The framework can be applied into multiple operating systems and can handle multiple stakeholders. Despite considerable advancements in the area of mandatory access control, a certain approach to enforcing mandatory access control can only be applied in a specific operating system. Other than PC market in which windows captures the overwhelming shares, there are a number of popular operating systems in the emerging smart phone environment, i.e. Android, Windows mobile, Symbian, RIM. It should be noted that more and more stakeholders are involved in smartphone software, such as devices owners, service providers and application providers. Our framework includes three parts—local decision layer, the middle layer and the remote decision layer. The middle layer takes charge of managing security contexts, OS API, operations and policy combination. The design of the remote decision layer doesn’t depend on certain operating systems because of the middle layer’s existence. We implement the framework in windows, linux and other popular embedded systems.
Keywords: Mandatory Access Control, Distributed System, General Platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22314639 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller
Authors: Mert Turanli, Hakan Temeltas
Abstract:
In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.
Keywords: Adaptive control, Centroidal Voronoi Tessellations, composite adaptation, coordination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10374638 Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process
Authors: R.Vinodha S. Abraham Lincoln, J. Prakash
Abstract:
Multi-loop (De-centralized) Proportional-Integral- Derivative (PID) controllers have been used extensively in process industries due to their simple structure for control of multivariable processes. The objective of this work is to design multiple-model adaptive multi-loop PID strategy (Multiple Model Adaptive-PID) and neural network based multi-loop PID strategy (Neural Net Adaptive-PID) for the control of multivariable system. The first method combines the output of multiple linear PID controllers, each describing process dynamics at a specific level of operation. The global output is an interpolation of the individual multi-loop PID controller outputs weighted based on the current value of the measured process variable. In the second method, neural network is used to calculate the PID controller parameters based on the scheduling variable that corresponds to major shift in the process dynamics. The proposed control schemes are simple in structure with less computational complexity. The effectiveness of the proposed control schemes have been demonstrated on the CSTR process, which exhibits dynamic non-linearity.Keywords: Multiple-model Adaptive PID controller, Multivariableprocess, CSTR process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20124637 Numerical Study of MHD Effects on Drop Formation in a T-Shaped Microchannel
Authors: M. Aghajani Haghighi, H. Emdad, K. Jafarpur, A. N. Ziaei
Abstract:
The effect of a uniform magnetic field on the formation of drops of specific size has been investigated numerically in a T-shaped microchannel. Previous researches indicated that the drop sizes of secondary stream decreases, with increasing main stream flow rate and decreasing interfacial tension. In the present study the effect of a uniform magnetic field on the main stream is considered, and it is proposed that by increasing the Hartmann number, the size of the drops of the secondary stream will be decreased.Keywords: Drop formation, Magnetohydrodynamics, Microchannel, Volume-of-Fluid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16954636 Simulation and Analysis of Control System for a Solar Desalination System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
Fresh water is one of the resources which is getting depleted day by day. A wise method to address this issue is by the application of renewable energy-sun irradiation and by means of decentralized, cheap, energetically self-sufficient, robust and simple to operate plants, distillates can be obtained from sea, river or even sewage. Solar desalination is a technique used to desalinate water using solar energy. The present work deals with the comprehensive design and simulation of solar tracking system using LabVIEW, temperature and mass flow rate control of the solar desalination plant using LabVIEW and also analysis of single phase inverter circuit with LC filters for solar pumping system in MATLAB. The main objective of this work is to improve the performance of solar desalination system using automatic tracking system, output control using temperature and mass flow rate control system and also to reduce the harmonic distortion in the solar pumping system by means of LC filters. The simulation of single phase inverter was carried out using MATLAB and the output waveforms were analyzed. Simulations were performed for optimum output temperature control, which in turn controls the mass flow rate of water in the thermal collectors. Solar tracking system was accomplished using LABVIEW and was tested successfully. The thermal collectors are tracked in accordance with the sun’s irradiance levels, thereby increasing the efficiency of the thermal collectors.Keywords: Desalination, Electro dialysis, LabVIEW, MATLAB, PWM inverter, Reverse osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23974635 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue
Abstract:
In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.
Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4864634 MHD Mixed Convection in a Vertical Porous Channel
Authors: B. Fersadou, H. Kahalerras
Abstract:
This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.Keywords: Heat sources, magnetic field, mixed convection, porous channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25834633 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Authors: Mustafa Sahin, İlkay Yavrucuk
Abstract:
This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.
Keywords: Adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6944632 Fuzzy C-Means Clustering Algorithm for Voltage Stability in Large Power Systems
Authors: Mohamad R. Khaldi, Christine S. Khoury, Guy M. Naim
Abstract:
The steady-state operation of maintaining voltage stability is done by switching various controllers scattered all over the power network. When a contingency occurs, whether forced or unforced, the dispatcher is to alleviate the problem in a minimum time, cost, and effort. Persistent problem may lead to blackout. The dispatcher is to have the appropriate switching of controllers in terms of type, location, and size to remove the contingency and maintain voltage stability. Wrong switching may worsen the problem and that may lead to blackout. This work proposed and used a Fuzzy CMeans Clustering (FCMC) to assist the dispatcher in the decision making. The FCMC is used in the static voltage stability to map instantaneously a contingency to a set of controllers where the types, locations, and amount of switching are induced.Keywords: Fuzzy logic, Power system control, Reactive power control, Voltage control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18854631 Reducing the Number of Constraints in Non Safe Petri Net
Authors: M. Zareiee, A. Dideban
Abstract:
This paper addresses the problem of forbidden states in non safe Petri Nets. In the system, for preventing it from entering the forbidden states, some linear constraints can be assigned to them. Then these constraints can be enforced on the system using control places. But when the number of constraints in the system is large, a large number of control places must be added to the model of system. This concept complicates the model of system. There are some methods for reducing the number of constraints in safe Petri Nets. But there is no a systematic method for non safe Petri Nets. In this paper we propose a method for reducing the number of constraints in non safe Petri Nets which is based on solving an integer linear programming problem.Keywords: discrete event system, Supervisory control, Petri Net, Constraint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13144630 Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting
Authors: Waleed S. Alwaneen
Abstract:
In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as Campylobacter, Salmonella sp. and Escherichia coli cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces.Keywords: Fruit beetle, waxworms, tiger worms, waste conditioning, composting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9204629 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver
Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang
Abstract:
In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.
Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20584628 The Effects of Crop Rotation and Nutrient Supply on the Leaf Area Values of Winter Wheat in a Long-Term Experiment
Authors: Gergely Szilágyi, Péter Pepó
Abstract:
Our field experiments were set at the RISF Látókép Experimental Farm of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen, on lime-coated chernozem soil. During our studies, we have investigated two winter wheat varieties (GK Öthalom, Mv Csárdás) of different genotypes. The preceding crops were sunflower and grain maize. We examined wheat leaf area index (LAI) five times during by BBCH scale. We have found that during the different stages of the vegetation period, the LAI values were different depending on the preceding crop, variety and nutrient levels. According to our results, the lowest LAI values were experienced in the control treatment, in the case of both preceding crops. According to our studies we can conclude that crop rotation and fertilizer treatment influenced the studied physiological trait to different extents.
Keywords: Winter wheat, crop rotation, fertilization, genotype, LAI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21514627 Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach
Authors: Mohammad Rakibul Islam
Abstract:
Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.
Keywords: Error correcting code, RS, BCH, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32324626 User Behavior Based Enhanced Protocol (UBEP) for Secure Near Field Communication
Authors: Vinay Gautam, Vivek Gautam
Abstract:
With increase in the unauthorized users access, it is required to increase the security in the Near Field Communication (NFC). In the paper we propose a user behavior based enhanced protocol entitled ‘User Behavior based Enhanced Protocol (UBEP)’ to increase the security in NFC enabled devices. The UBEP works on the history of interaction of a user with system.The propose protocol considers four different factors (touch, time and distance & angle) of user behavior to know the authenticity or authorization of the users. These factors can be same for a user during interaction with the system. The UBEP uses two phase user verification system to authenticate a user. Firstly the acquisition phase is used to acquire and store the user interaction with NFC device and the same information is used in future to detect the authenticity of the user. The second phase (recognition) uses analysis of current and previous scenario of user interaction and digital signature verification system to finally authenticate user. The analysis of user based input makes a NFC transaction more advance and secure. This security is very tactical because it is completely depends on usage of the device.
Keywords: Security, Network Field communication, NFC Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20074625 Application of De-Laval Nozzle Transonic Flow Field Computation Approaches
Abstract:
A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.
Keywords: De-Laval nozzles, transonic calculations, transonic flow, supersonic nozzle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286