Search results for: Neural Networks
1196 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13011195 Modeling of Reusability of Object Oriented Software System
Authors: Parvinder S. Sandhu, Harpreet Kaur, Amanpreet Singh
Abstract:
Automatic reusability appraisal is helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this research work, structural attributes of software components are explored using software metrics and quality of the software is inferred by different Neural Network based approaches, taking the metric values as input. The calculated reusability value enables to identify a good quality code automatically. It is found that the reusability value determined is close to the manual analysis used to be performed by the programmers or repository managers. So, the developed system can be used to enhance the productivity and quality of software development.Keywords: Neural Network, Software Reusability, Software Metric, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801194 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15221193 Concrete Mix Design Using Neural Network
Authors: Rama Shanker, Anil Kumar Sachan
Abstract:
Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.
Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26371192 A Multiple-State Based Power Control for Multi-Radio Multi-Channel Wireless Mesh Networks
Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry, N. Ntlatlapa
Abstract:
Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified Channel Graphs (UCGs). Second, each network interface card (NIC) or radio assigned to a unique UCG adjusts transmission power using predicted multiple interaction state variables (IV) across UCGs. Depending on the size of queue loads and intra- and inter-channel states, each NIC optimizes transmission power locally and asynchronously. A new power selection MRMC unification protocol (PMMUP) is proposed that coordinates interactions among radios. The efficacy of the proposed method is investigated through simulations.
Keywords: Asynchronous convergence, Multi-Radio Multi-Channel (MRMC), Power Selection Multi-Radio Multi-Channel Unification Protocol (PMMUP) and Wireless Mesh Networks(WMNs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051191 Stochastic Estimation of Wireless Traffic Parameters
Authors: Somenath Mukherjee, Raj Kumar Samanta, Gautam Sanyal
Abstract:
Different services based on different switching techniques in wireless networks leads to drastic changes in the properties of network traffic. Because of these diversities in services, network traffic is expected to undergo qualitative and quantitative variations. Hence, assumption of traffic characteristics and the prediction of network events become more complex for the wireless networks. In this paper, the traffic characteristics have been studied by collecting traces from the mobile switching centre (MSC). The traces include initiation and termination time, originating node, home station id, foreign station id. Traffic parameters namely, call interarrival and holding times were estimated statistically. The results show that call inter-arrival and distribution time in this wireless network is heavy-tailed and follow gamma distributions. They are asymptotically long-range dependent. It is also found that the call holding times are best fitted with lognormal distribution. Based on these observations, an analytical model for performance estimation is also proposed.
Keywords: Wireless networks, traffic analysis, long-range dependence, heavy-tailed distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961190 RBF modeling of Incipient Motion of Plane Sand Bed Channels
Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao
Abstract:
To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15061189 Computer Models of the Vestibular Head Tilt Response, and Their Relationship to EVestG and Meniere's Disease
Authors: Daniel Heibert, Brian Lithgow, Kerry Hourigan
Abstract:
This paper attempts to explain response components of Electrovestibulography (EVestG) using a computer simulation of a three-canal model of the vestibular system. EVestG is a potentially new diagnostic method for Meniere's disease. EVestG is a variant of Electrocochleography (ECOG), which has been used as a standard method for diagnosing Meniere's disease - it can be used to measure the SP/AP ratio, where an SP/AP ratio greater than 0.4-0.5 is indicative of Meniere-s Disease. In EVestG, an applied head tilt replaces the acoustic stimulus of ECOG. The EVestG output is also an SP/AP type plot, where SP is the summing potential, and AP is the action potential amplitude. AP is thought of as being proportional to the size of a population of afferents in an excitatory neural firing state. A simulation of the fluid volume displacement in the vestibular labyrinth in response to various types of head tilts (ipsilateral, backwards and horizontal rotation) was performed, and a simple neural model based on these simulations developed. The simple neural model shows that the change in firing rate of the utricle is much larger in magnitude than the change in firing rates of all three semi-circular canals following a head tilt (except in a horizontal rotation). The data suggests that the change in utricular firing rate is a minimum 2-3 orders of magnitude larger than changes in firing rates of the canals during ipsilateral/backward tilts. Based on these results, the neural response recorded by the electrode in our EVestG recordings is expected to be dominated by the utricle in ipsilateral/backward tilts (It is important to note that the effect of the saccule and efferent signals were not taken into account in this model). If the utricle response dominates the EVestG recordings as the modeling results suggest, then EVestG has the potential to diagnose utricular hair cell damage due to a viral infection (which has been cited as one possible cause of Meniere's Disease).
Keywords: Diagnostic, endolymph hydrops, Meniere's disease, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15161188 Using Historical Data for Stock Prediction of a Tech Company
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.
Keywords: Finance, machine learning, opening price, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6531187 Location Based Clustering in Wireless Sensor Networks
Authors: Ashok Kumar, Narottam Chand, Vinod Kumar
Abstract:
Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.
Keywords: Wireless sensor networks, clustering, energy efficient, localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26841186 A Methodology for Definition of Road Networks in Rural Areas of Nepal
Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes
Abstract:
This work provides a practical method for the development of rural road networks in rural areas of developing countries. The proposed methodology enables to determine obligatory points in the rural road network maximizing the number of settlements that have access to basic services within a given maximum distance. The proposed methodology is simple and practical, hence, highly applicable to real-world scenarios, as demonstrated in the definition of the road network for the rural areas of Nepal.Keywords: Minimum spanning tree, nodal points, rural road network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28791185 Nonlinear Modeling of the PEMFC Based On NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear identification, NNARX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21971184 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011183 DODR : Delay On-Demand Routing
Authors: Dong Wan-li, Gu Nai-jie, Tu Kun, Bi Kun, Liu Gang
Abstract:
As originally designed for wired networks, TCP (transmission control protocol) congestion control mechanism is triggered into action when packet loss is detected. This implicit assumption for packet loss mostly due to network congestion does not work well in Mobile Ad Hoc Network, where there is a comparatively high likelihood of packet loss due to channel errors and node mobility etc. Such non-congestion packet loss, when dealt with by congestion control mechanism, causes poor TCP performance in MANET. In this study, we continue to investigate the impact of the interaction between transport protocols and on-demand routing protocols on the performance and stability of 802.11 multihop networks. We evaluate the important wireless networking events caused routing change, and propose a cross layer method to delay the unnecessary routing changes, only need to add a sensitivity parameter α , which represents the on-demand routing-s reaction to link failure of MAC layer. Our proposal is applicable to the plain 802.11 networking environment, the simulation results that this method can remarkably improve the stability and performance of TCP without any modification on TCP and MAC protocol.
Keywords: Mobile ad hoc networks (MANET), on-demandrouting, performance, transmission control protocol (TCP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17911182 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.
Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9721181 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks
Authors: Siliang Wang, Minghui Wang, Jun Hu
Abstract:
A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.Keywords: pruning method, stochastic, time-varying networks, optimal path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18521180 Architecture Based on Dynamic Graphs for the Dynamic Reconfiguration of Farms of Computers
Authors: Carmen Navarrete, Eloy Anguiano
Abstract:
In the last years, the computers have increased their capacity of calculus and networks, for the interconnection of these machines. The networks have been improved until obtaining the actual high rates of data transferring. The programs that nowadays try to take advantage of these new technologies cannot be written using the traditional techniques of programming, since most of the algorithms were designed for being executed in an only processor,in a nonconcurrent form instead of being executed concurrently ina set of processors working and communicating through a network.This paper aims to present the ongoing development of a new system for the reconfiguration of grouping of computers, taking into account these new technologies.
Keywords: Dynamic network topology, resource and task allocation, parallel computing, heterogeneous computing, dynamic reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621179 QoS Management in the Future Internet
Authors: S. Rao, S. Khavtasi, C. Chassot, N. Van Wambeke, F. Armando, S. P. Romano, T. Castaldi
Abstract:
The talks about technological convergence had been around for almost twenty years. Today Internet made it possible. And this is not only technical evolution. The way it changed our lives reflected in variety of applications, services and technologies used in day-to-day life. Such benefits imposed even more requirements on heterogeneous and unreliable IP networks. Current paper outlines QoS management system developed in the NetQoS [1] project. It describes an overall architecture of management system for heterogeneous networks and proposes automated multi-layer QoS management. Paper focuses on the structure of the most crucial modules of the system that enable autonomous and multi-layer provisioning and dynamic adaptation.Keywords: Automated QoS management, multi-layerprovisioning and adaptation, QoS, QoE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811178 Intelligent Caching in on-demand Routing Protocol for Mobile Adhoc Networks
Authors: Shobha.K.R., K. Rajanikanth
Abstract:
An on-demand routing protocol for wireless ad hoc networks is one that searches for and attempts to discover a route to some destination node only when a sending node originates a data packet addressed to that node. In order to avoid the need for such a route discovery to be performed before each data packet is sent, such routing protocols must cache routes previously discovered. This paper presents an analysis of the effect of intelligent caching in a non clustered network, using on-demand routing protocols in wireless ad hoc networks. The analysis carried out is based on the Dynamic Source Routing protocol (DSR), which operates entirely on-demand. DSR uses the cache in every node to save the paths that are learnt during route discovery procedure. In this implementation, caching these paths only at intermediate nodes and using the paths from these caches when required is tried. This technique helps in storing more number of routes that are learnt without erasing the entries in the cache, to store a new route that is learnt. The simulation results on DSR have shown that this technique drastically increases the available memory for caching the routes discovered without affecting the performance of the DSR routing protocol in any way, except for a small increase in end to end delay.Keywords: Caching, DSR, on demand routing, MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901177 A Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-GA Based Approaches for Software Reusability Evaluation
Authors: Parvinder Singh Sandhu, Dalwinder Singh Salaria, Hardeep Singh
Abstract:
Software Reusability is primary attribute of software quality. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. In this paper, we have devised the framework of metrics that uses McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component as input attributes and calculated reusability of the software component. Here, comparative analysis of the fuzzy, Neuro-fuzzy and Fuzzy-GA approaches is performed to evaluate the reusability of software components and Fuzzy-GA results outperform the other used approaches. The developed reusability model has produced high precision results as expected by the human experts.Keywords: Software Reusability, Software Metrics, Neural Networks, Genetic Algorithm, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151176 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921175 Decision Support System for Flood Crisis Management using Artificial Neural Network
Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi
Abstract:
This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.Keywords: Decision Support System, Neural Network, Flood Level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251174 Learning Monte Carlo Data for Circuit Path Length
Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad
Abstract:
This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941173 Comparison of Different Types of Sources of Traffic Using SFQ Scheduling Discipline
Authors: Alejandro Gomez Suarez, H. Srikanth Kamath
Abstract:
In this paper, SFQ (Start Time Fair Queuing) algorithm is analyzed when this is applied in computer networks to know what kind of behavior the traffic in the net has when different data sources are managed by the scheduler. Using the NS2 software the computer networks were simulated to be able to get the graphs showing the performance of the scheduler. Different traffic sources were introduced in the scripts, trying to establish the real scenario. Finally the results were that depending on the data source, the traffic can be affected in different levels, when Constant Bite Rate is applied, the scheduler ensures a constant level of data sent and received, but the truth is that in the real life it is impossible to ensure a level that resists the changes in work load. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21371172 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network
Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain
Abstract:
This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.
Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3561171 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: O. O. Obe, V. Balanica, E. Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.
Keywords: Neural Network, hypertension, data set, training set, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591170 Identification of Coauthors in Scientific Database
Authors: Thiago M. R Dias, Gray F. Moita
Abstract:
The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.
Keywords: Extraction and data integration, Information Retrieval, Scientific Collaboration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111169 Upgrading Performance of DSR Routing Protocol in Mobile Ad Hoc Networks
Authors: Mehdi Alilou, Mehdi Dehghan
Abstract:
Routing in mobile ad hoc networks is a challenging task because nodes are free to move randomly. In DSR like all On- Demand routing algorithms, route discovery mechanism is associated with great delay. More Clearly in DSR routing protocol to send route reply packet, when current route breaks, destination seeks a new route. In this paper we try to change route selection mechanism proactively. We also define a link stability parameter in which a stability value is assigned to each link. Given this feature, destination node can estimate stability of routes and can select the best and more stable route. Therefore we can reduce the delay and jitter of sending data packets.
Keywords: DSR, MANET, proactive, routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23571168 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem
Authors: Mohammad Reza Karami Nejad
Abstract:
A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.
Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361167 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method
Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi
Abstract:
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.
Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295