Search results for: Thin layer chromatography (TLC)
251 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90°/0°] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of subelements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.
Keywords: Dynamic finite element, localized interface degeneration, proportional damping, state-space modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081250 Wind Tunnel for Aerodynamic Development Testing
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, F. A. Ribeiro
Abstract:
The study of the aerodynamics related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodies of cars, seeking greater efficiency. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodies of cars, seeking greater efficiency. For this, a methodology for wind tunnel type selection is designed to be built, taking into account the various existing configurations in which chose to build an open circuit tunnel, due to the lower complexity of construction and installation; operational simplicity and low cost. The guidelines for the project were teaching: the layer that limits study and analyze specimens with different geometries. For the variation of pressure in the test, section of a switched gauge used a pitot tube. Thus, it was possible to obtain quantitative and qualitative results, which proved to be satisfactory.Keywords: Wind tunnel, Aerodynamics, Air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377249 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.
Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442248 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond
Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena
Abstract:
Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.
Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605247 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids
Authors: Saqib Mahmood, Rolf Radespiel
Abstract:
This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .Keywords: VGJ, Chimera Grid, DES, RANS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480246 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation
Authors: Christhu Raj M. R., Rajeev Sukumaran
Abstract:
Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197245 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.
Keywords: Energy-efficient, fog computing, IoT, telehealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84244 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560243 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan
Authors: M. Nafi, A. El Amein, M. El Dawi, K. Salih, O. Elbahi, A. Abou
Abstract:
In present study, a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections, the average of the ooids was ranged between 90%-80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine, and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The presence of infrastructures in addition to the presence of massive quantities of iron ore would make exploitation economically.Keywords: HICS, Late Carboniferous age, Oolitic iron ore, phosphorus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548242 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.
Keywords: Multi objective optimization, Pareto front, composite patch, cracked pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908241 Capacitive ECG Measurement by Conductive Fabric Tape
Authors: Yue-Der Lin, Ya-Hsueh Chien, Yen-Ting Lin, Shih-Fan Wang, Cheng-Lun Tsai, Ching-Che Tsai
Abstract:
Capacitive electrocardiogram (ECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available on its implementation, especially for multichannel system in standard ECG leads. This paper begins from the design criteria for capacitive ECG measurement and presents a multichannel limb-lead capacitive ECG system with conductive fabric tapes pasted on a double layer PCB as the capacitive sensors. The proposed prototype system incorporates a capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented prototype system has been verified to be stable by theoretic analysis and practical long-term experiments. The signal quality is competitive to that acquired by commercial ECG machines. The feasible size and distance of capacitive sensor have also been evaluated by a series of tests. From the test results, it is suggested to be greater than 60 cm2 in sensor size and be smaller than 1.5 mm in distance for capacitive ECG measurement.
Keywords: capacitive driven-body (CDB) circuit, capacitive electrocardiogram (ECG) measurement, capacitive sensor, conductive fabric tape, power-line interference (PLI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3129240 Statistical Analysis of Stresses in Rigid Pavement
Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela
Abstract:
Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.Keywords: concrete, FEM, pavement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573239 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas
Authors: S.F.S. Draman, R. Daik, A. Musa
Abstract:
Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394238 Analytical Subthreshold Drain Current Model Incorporating Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET
Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru
Abstract:
Carrier scatterings in the inversion channel of MOSFET dominates the carrier mobility and hence drain current. This paper presents an analytical model of the subthreshold drain current incorporating the effective electron mobility model of the pocket implanted nano scale n-MOSFET. The model is developed by assuming two linear pocket profiles at the source and drain edges at the surface and by using the conventional drift-diffusion equation. Effective electron mobility model includes three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as ballistic phenomena in the pocket implanted n-MOSFET. The model is simulated for various pocket profile and device parameters as well as for various bias conditions. Simulation results show that the subthreshold drain current data matches the experimental data already published in the literature.
Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Subthreshold Drain Current and Effective Mobility Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562237 Affective Adaptation Design for Better Gaming Experiences
Authors: Ollie Hall, Salma ElSayed
Abstract:
Affective adaptation is a creative way for game designers to add an extra layer of engagement to their productions. When player’s emotions are an explicit factor in mechanics design, endless possibilities for imaginative gameplay emerge. Whilst gaining popularity, existing affective game research mostly runs controlled experiments in restrictive settings and rely on one or more specialist devices for measuring player’s emotional state. These conditions albeit effective, are not necessarily realistic. Moreover, the simplified narrative and intrusive wearables may not be suitable for players. This exploratory study investigates delivering an immersive affective experience in the wild with minimal requirements, in an attempt for the average developer to reach the average player. A puzzle game is created with rich narrative and creative mechanics. It employs both explicit and implicit adaptation and only requires a web camera. Participants played the game on their own machines in various settings. Whilst it was rated feasible, very engaging and enjoyable, it remains questionable whether a fully immersive experience was delivered due to the limited sample size.
Keywords: affective games, dynamic adaptation, emotion recognition, game design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844236 Optimising Data Transmission in Heterogeneous Sensor Networks
Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read
Abstract:
The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.
Keywords: Wireless sensor networks, remote method invocation, transmission time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036235 The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces
Authors: M. Z. Fathiah, R. G. Edyvean
Abstract:
Electrostatic interaction energy (ΔEEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (ΔEVDW) and acid base (ΔEAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential; however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focusses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion.
Keywords: XDLVO, Electrostatic interaction energy, zeta potential, P. putida, mineral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604234 A Subjectively Influenced Router for Vehicles in a Four-Junction Traffic System
Authors: Anilkumar Kothalil Gopalakrishnan
Abstract:
A subjectively influenced router for vehicles in a fourjunction traffic system is presented. The router is based on a 3-layer Backpropagation Neural Network (BPNN) and a greedy routing procedure. The BPNN detects priorities of vehicles based on the subjective criteria. The subjective criteria and the routing procedure depend on the routing plan towards vehicles depending on the user. The routing procedure selects vehicles from their junctions based on their priorities and route them concurrently to the traffic system. That is, when the router is provided with a desired vehicles selection criteria and routing procedure, it routes vehicles with a reasonable junction clearing time. The cost evaluation of the router determines its efficiency. In the case of a routing conflict, the router will route the vehicles in a consecutive order and quarantine faulty vehicles. The simulations presented indicate that the presented approach is an effective strategy of structuring a subjective vehicle router.Keywords: Backpropagation Neural Network, Backpropagationalgorithm, Greedy routing procedure, Subjective criteria, Vehiclepriority, Cost evaluation, Route generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390233 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods
Authors: W. Swiderski
Abstract:
Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547232 Histological Structure of the Thyroid Gland in Duck: A Light and Electron Microscopic Study
Authors: Parchami A., Fatahian Dehkordi RF.
Abstract:
The present investigation aimed to study the histomorphometric characterizations of the thyroid gland of the duck. Five adult male and five adult female ducks were used in the experiment. Results showed that the overall histological structure of the thyroid gland of the duck were similar to those of the other vertebrae. The gland consisted of roughly spherical randomly distributed micro and macrofollicles with very little interstitial tissue between them. Each follicle is lined by a single layer of epithelial cells enclosing a cavity, the follicular cavity, which is filled with colloid. Ultrastructural findings showed that the apical surface of the follicular cells bears a variable number of short, irregularly distributed microvilli which are apparently more numerous on the columnar cells than on the lower, relatively inactive cells. Mitochondria and rough endoplasmic reticulum occupy the subnuclear region of the follicular cell, whereas the Golgi complex, free ribosomes and colloid droplets were found in the apical cytoplasm. At light or electron microscopic levels, there was no sex difference in histomorphometric characteristics of the thyroid glands.ls.Keywords: Duck, Thyroid gland, Light microscopy, Electron microscopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557231 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption
Authors: G.Ashwini, A.T.Eswara
Abstract:
This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243230 Nanocharacterization of PIII Treated 7075 Aluminum Alloy
Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda
Abstract:
Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.
Keywords: Aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014229 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel
Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis
Abstract:
Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Since establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links, this paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.
Keywords: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147228 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.
Keywords: Active linear control, Lyapunov stability theorem, piezoelectricity, smart structure, static deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495227 Stress Analysis of Adhesively Bonded Double- Lap Joints Subjected to Combined Loading
Authors: Solyman Sharifi, Naghdali Choupani
Abstract:
Adhesively bonded joints are preferred over the conventional methods of joining such as riveting, welding, bolting and soldering. Some of the main advantages of adhesive joints compared to conventional joints are the ability to join dissimilar materials and damage-sensitive materials, better stress distribution, weight reduction, fabrication of complicated shapes, excellent thermal and insulation properties, vibration response and enhanced damping control, smoother aerodynamic surfaces and an improvement in corrosion and fatigue resistance. This paper presents the behavior of adhesively bonded joints subjected to combined thermal loadings, using the numerical methods. The joint configuration considers aluminum as central adherend with six different outer adherends including aluminum, steel, titanium, boronepoxy, unidirectional graphite-epoxy and cross-ply graphite-epoxy and epoxy-based adhesives. Free expansion of the joint in x direction was permitted and stresses in adhesive layer and interfaces calculated for different adherends.Keywords: Thermal stress, patch repair, Adhesive joint, Finiteelement analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876226 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.
Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647225 Advanced Neural Network Learning Applied to Pulping Modeling
Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406224 Photogrammetry and GIS Integration for Archaeological Documentation of Ahl-Alkahf, Jordan
Authors: Rami Al-Ruzouq, Abdallah Al-Zoubi, Abdel-Rahman Abueladas, Petya Dimitrova
Abstract:
Protection and proper management of archaeological heritage are an essential process of studying and interpreting the generations present and future. Protecting the archaeological heritage is based upon multidiscipline professional collaboration. This study aims to gather data by different sources (Photogrammetry and Geographic Information System (GIS)) integrated for the purpose of documenting one the of significant archeological sites (Ahl-Alkahf, Jordan). 3D modeling deals with the actual image of the features, shapes and texture to represent reality as realistically as possible by using texture. The 3D coordinates that result of the photogrammetric adjustment procedures are used to create 3D-models of the study area. Adding Textures to the 3D-models surfaces gives a 'real world' appearance to the displayed models. GIS system combined all data, including boundary maps, indicating the location of archeological sites, transportation layer, digital elevation model and orthoimages. For realistic representation of the study area, 3D - GIS model prepared, where efficient generation, management and visualization of such special data can be achieved.
Keywords: Archaeology, close range photogrammetry, ortho-photo, 3D-GIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162223 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading
Authors: Vaso K. Kapnopoulou, Piero Caridis
Abstract:
The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.Keywords: Lower hopper knuckle, high cycle fatigue, finite element method, dynamic load cases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995222 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil
Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung
Abstract:
The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132